
  

A Survey of Power and Electromagnetic-Based Side-Channel Attack 
Countermeasures 
Robert Kramer, Mark Reith, Wayne Henry and Anthony Rose 
Air Force Institute of Technology, Wright-Patterson Air Force Base, USA 

robert.kramer.10@us.af.mil  
mark.reith.3@us.af.mil 
wayne.henry@us.af.mil  
anthony.rose.3@us.af.mil  

Abstract: Cryptography is a cornerstone of modern computing security, but it remains vulnerable to Side-Channel Attacks 
(SCAs), which exploit hardware implementations to compromise encryption. SCAs pose significant cybersecurity risks by 
extracting sensitive information, such as encryption keys, through passive observation of side-channel leakage or active 
manipulation of system operations. This paper reviews non-invasive power and EM-based SCAs, evaluates the effectiveness 
and limitations of existing countermeasures, and identifies gaps that warrant further research. The analysis aims to guide 
the development of robust defenses and inform future efforts to secure cryptographic systems against evolving threats. 
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1. Introduction 
Cryptographic systems play a vital role in protecting sensitive data. Researchers have developed numerous 
methods and algorithms to secure data; however, these systems are not impervious to attack. Piessens et al 
(2024) describe Side-Channel Attacks (SCAs) as attacks that exploit the physical and operational implementation 
of these cryptographic methods by observing different side-channel leakage, such as power and timing, posing 
a significant threat to data security. An infamous example of SCA exploitation is the Spectre and Meltdown 
attacks. These attacks implemented SCAs to recover encrypted data and could hack practically all Intel x86 
microprocessors, IBM Power processors, and AMD processors as noted by Abu-Ghazaleh et al (2019). 

The primary objectives of this survey are to consolidate existing research on power and electromagnetic (EM) 
based SCA countermeasures, compare these countermeasures to identify strengths and weaknesses, and 
promote discussion on countermeasures as a whole. Lastly, we identify areas for future research based on these 
findings. Understanding these attacks and their defenses is essential for enhancing the security of cryptographic 
systems as threats adapt and evolve. 

The structure of this paper is as follows: Section 2 discusses the scope of research and Section 3 provides a 
background of power-based SCAs and EM-based SCAs. Section 4 examines a range of countermeasures 
developed for power-based SCAs and EM-based SCAs. Section 5 presents a comparative analysis of the 
countermeasures and Section 6 provides suggestions for future research. Lastly, Section 7 concludes the survey. 

2. Scope of Research 
The background section covers power and EM-based SCAs because they are both passive, non-invasive SCA 
methods and there is an inherent relationship between power and EM radiation. Providing a background on the 
numerous types of SCAs is implausible and outside the scope of this paper. In this survey, countermeasures refer 
to methods that detect or prevent SCAs. The countermeasures discussed are representative of a much broader 
range of techniques. A comprehensive survey of all countermeasures is impractical, so this paper aims to 
promote discussion to improve future development. 

3. Background 
3.1 Power-Based Side-Channel Attacks 

Two simple facts about conventional computers are that they require power and use ones and zeros. Power-
based SCAs (P-SCAs) exploit these facts. Ones and zeros are stored in transistors which are modified by either 
applying power or removing power. When a system performs an operation, it changes these ones and zeros 
based on the operations, so the resulting overall power of the system fluctuates (Gupta et al, 2019; Zadeh et al, 
2012). This fluctuation is visible on a graph as a function of power and time on an oscilloscope. P-SCAs require 
the attacker to have physical access to the system to accurately measure the slight power changes that occur. 
There are various types of P-SCAs; however, this survey focuses on Simple Power Analysis (SPA), Differential 
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Power Analysis (DPA), and Correlation Power Analysis (CPA) attacks because they are the most prevalent as 
described in Taouil et al (2021). 

3.1.1 Simple power analysis 

SPA is considered the most basic type of P-SCA due to its simplicity. It attempts to retrieve the key based on 
passive observations of power changes. The power changes are measured by an oscilloscope with the probes 
placed near the cryptographic processor. Detection by the target system is difficult because of its non-invasive 
nature. The attacker then runs the cryptographic algorithm and measures the power fluctuation, resulting in an 
output known as a trace. Comparing the power fluctuations to the cryptographic operations can provide the 
attacker with information on what operations were performed and when. Using this information, the encryption 
key can be deduced. A limitation of this type of attack is that it requires basic knowledge of the encryption 
algorithm in order to analyze the trace; however, many commonly used encryption algorithms are publicly 
available, so the operations are not difficult to find (Zadeh et al, 2013; Mayer-Sommer, 2000). A famous example 
of this was an attack against the Rivest-Shamir-Adleman (RSA) encryption, which uses square and multiply 
operations to encrypt. Because the attacker knew RSA uses square and multiply operations, the attacker was 
able to deduce the encryption key based on the power fluctuations (Diehl, 2020). 

3.1.2 Differential power analysis 

DPA is more complex than SPA because it relies on creating statistical models of power consumption to compare 
with actual power consumption in order to reduce noise; however, it does not require prior knowledge of the 
system (Diehl, 2020; Duan et al, 2016; Martinasek, et al 2013). To create a statistical model, the attacker 
measures thousands of traces against different inputs and the same key, then divides them into two classes 
based on the output of a single pre-determined bit. Generally, the more traces, the higher the chance of key 
recovery. Using statistical analysis, the difference in means between the two classes can be calculated using a 
graph, allowing the attacker to infer subkeys, 8 bits, of the encryption key and, subsequently, the entire 
encryption key (Zadeh et al, 2013). 

3.1.3 Correlation power analysis 

CPA is similar to DPA as it also creates statistical models to deduce the encryption key and having more traces 
increases the chance of key recovery. However, while DPA looks at the difference in means, CPA looks for a high 
correlation coefficient between the hypothesized and measured power consumption (Kang et al, 2015; Kundrata 
et al, 2020). The traces display high correlation visually as spikes for the correctly guessed subkeys in the 
generated graphs. Once the attacker has verified the subkey for each part of the key, they are able to piece 
together the full encryption key as described in Safta et al (2016) and Damian et al (2017). 

3.2 Electromagnetic-Based Side-Channel Attacks 

EM-Based SCAs (EM-SCAs) operate on the same principles as P-SCAs, except instead of exploiting power 
consumption, the attacker exploits the EM field radiated by the target system. These fields are generated during 
data processing and operations as a result of changes in current and power. EM-SCAs use oscilloscopes and 
spectrum analyzers, but instead of attaching power probes directly to the target system like a P-SCA, a single 
EM probe is positioned above the system to measure the EM field. 

Common types of EM-SCAs are Simple EM Analysis (SEMA), Differential EM Analysis (DEMA), and Correlation 
EM Analysis (CEMA) attacks (Das et al, 2023). SEMA, DEMA, and CEMA all use the same principles as their P-SCA 
counterparts. SEMA directly analyzes the EM emissions using a spectrum analyzer to infer the encryption key. 
DEMA uses statistical analysis to compare measured EM emissions and hypothetical models to reveal the 
encryption key using difference of means analysis. CEMA calculates the correlation coefficient between 
measured EM emissions and hypothetical models to deduce the encryption key (Zhou et al, 2019; Hatun et al, 
2019; Montminy et al, 2013).  

Table 1 provides a concise comparison of the discussed SCAs based on technique used. 

 

 

 

 

277 
The Proceedings of the 24th European Conference on Cyber Warfare and Security, ECCWS 2025



Robert Kramer et al. 

 

Table 1: Types of Side-Channel Attacks 

Attack Type Technique 

SPA Direct observation of power  

DPA Statistical analysis using difference of means 

CPA Statistical analysis using correlation coefficients 

SEMA  Direct analysis of EM radiation 

DEMA  Statistical analysis using difference of means 

CEMA Statistical analysis using correlation coefficients 

4. Countermeasures 
This section covers countermeasures for P-SCAs and EM-SCAs. Some of the countermeasures are designed 
specifically for P-SCA or EM-SCA while some are designed for both due to the inherit relationship between power 
and EM radiation. 

4.1 Shuffling 

Shuffling is a common SCA countermeasure method. This specific implementation of shuffling proposed by 
Nozaki et al (2021) was designed to prevent Model Extraction P-SCAs. Model Extraction P-SCAs are used against 
multi-layer perceptron (MLP), a type of Neural Network. Model Extraction P-SCAs use CPA to exploit the 
multiplication operations done in an MLP to recreate the model for themselves by comparing power 
consumption to the Hamming weight (HW) of registers during a calculation. This implementation shuffles the 
multiplication operation order to prevent modeling extraction. This randomizes the power fluctuations so that 
the correlation between power consumption and HW of registers is weaker. Nozaki et al (2021) tested this 
countermeasure and successfully prevented the attacker from extracting the MLP model after 1,000 traces. 

4.2 Machine Learning On-Chip Security Network 

The basic concept presented in Kenarangi et al (2019) is to create a machine learning (ML) integrated circuit (IC) 
to develop an on-chip security network. The ML model detects voltage variations across the device and predicts 
its security level using a network of integrated sensors. Researchers trained the ML IC security network with an 
external probe connected to the power delivery network (PDN) to simulate a compromised system and without 
a probe to simulate a secure system. The ML IC security network compares the voltage levels of the secure 
system and the compromised system. When simulated against a P-SCA, the ML IC security network detected 
differences up to 50 millivolts. In a simulation against a DC-shifted P-SCA, where the voltage difference was 
reduced to less than 10 millivolts, the ML IC security network was still able to successfully detect a P-SCA with 
up to 90% accuracy. When simulated against an EM-SCA, Kenarangi et al (2019) found the security network was 
able to detect an EM-SCA with up to 90% accuracy on the running device. 

4.3 Battery Impedance Monitoring (BIM) 

As discussed previously, power is measured using probes, and these probes introduce a slight resistance that is 
exploited by the BIM method introduced in Munny et al (2021). Using a similar method to the previous 
countermeasure, BIM compares the impedance of a secure system with the impedance of a compromised 
system to determine if it is under attack. Experiments showed that the speed BIM detects attacks varies based 
on the resistance of the probes. Munny et al (2021) found that with an 8.26 Ohm probe, the system was able to 
detect an attack in 22.020 milliseconds after probing began, while the attacker needs approximately 1,000 
milliseconds to reveal the key. 

4.4 Real-Time Switched Capacitor Detection (EoH) 

A real-time switched capacitor P-SCA detection technique, named EoH, was developed in Younes et al (2023). 
EoH utilizes a switched capacitor DC-DC (SC-DCDC) converter within the power management unit alongside a 
lightweight Artificial Intelligence (AI) engine. The purpose of the SC-DCDC is to facilitate non-invasive load 
measurement by collecting switching activity. The SC-DCDC is used because it is likely already on most systems-
on-chip (SoC). The AI trains on the switching activity collected during standard cryptographic operations and 
learns the normal behaviour. When the AI detects abnormal activity, it identifies it as an attack and uses the SC-
DCDC converter to dynamically scale the voltage to mitigate the P-SCA as stated in Younes et al (2023). 
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4.5 Attenuated Signature Noise Injection (ASNI) 

There are two concepts behind ASNI described in Maity et al (2018). First, embed the cryptographic system into 
a high efficiency Signature Attenuation Hardware (SAH) so that the current fluctuations produced by the AES are 
suppressed and not detectable by an SPA. Second, inject noise to further decorrelate measured power traces. 
The SAH reduces the amount of noise injection required to mask thus reducing the required overhead to 
generate noise. This countermeasure was tested with a CPA attack that measured over 1 million traces and 
successfully prevented recovery of the encryption key (Maity et al, 2018). 

4.6 FRIES Electromagnetic Noise Generator 

The FRIES noise generator proposed in Frieslaar et al (2018) uses cryptographic hash functions. The hash 
functions are given random inputs to generate hashes which creates random EM noise. The noise generator runs 
indefinitely in the background while the target system performs standard cryptographic operations. Frieslaar et 
al (2018) tested this countermeasure on a Raspberry Pi using AES-128 encryption and an attempted CEMA was 
unable to discover correlation between the noise and the EM radiation of the AES-128 encryption after more 
than 1 million traces. 

4.7 Coplanar Capacitive Asymmetry Sensing (CEASE) 

The foundational idea of CEASE in Seo et al (2023) is to measure the capacitance between pairs of metal plates 
that are on the top metal layer of an IC or printed circuit board using LC oscillator circuits. As metallic and non-
metallic objects approach the plates, they interact with the plate's electric field, causing a minor change in 
capacitance. CEASE measures the difference between the two pairs to determine if a probe is approaching. 
Simulation results shown in Seo et al (2023) state that CEASE successfully sensed approaching EM probes from 
a distance of >1 mm with a >17% deviation from base-line interplate capacitance. 

4.8 Electromagnetic Obfuscation (EO) Shield 

The EO-Shield is designed in Gao et al (2023) to protect against EM-SCAs and focused ion beam (FIB) attacks, a 
type of invasive attack not covered in this survey. A basic overview of FIB is that it edits a circuit to extract 
information through reverse engineering. The EO-Shield incorporates an active shield and an information 
leakage obfuscation module. The shield uses the top metal layer of a circuit to detect and inhibit FIB attacks. The 
information leakage obfuscation module uses a linear feedback shift register, a ring oscillator (RO) oscillation 
circuit, and a signal comparison module to generate random signals. It emanates these signals, essentially EM 
noise, from the active shield to obfuscate cryptographic operations. This was tested against CEMA on an AES 
encryption circuit and prevented key recovery for 1000 traces as stated in Gao et al (2023). 

4.9 Secure Reconfigurable Cryptographic Co-processor (SRCP) 

SRCP is a reconfigurable co-processor able to support AES, DES, Rivest Cipher 6 (RC6), and international data 
encryption algorithm (IDEA), while being resistant to different types of SCAs as described in Shan et al (2015). 
SRCP is different from the previous countermeasures as there are five configurable countermeasures. There are 
three global and two encryption flow related countermeasures. 

The first global countermeasure is randomization, essentially a form of noise generation, which enhances DPA 
resistance. This uses idle processing elements to perform random operations to randomize the power 
fluctuations (Shan et al, 2015). The next global countermeasure is partial complementary operation storage. This 
configures idle flip-flops to store data because flip-flops leak less data than registers as stated in Shan et al 
(2015). The last global countermeasure is out of order execution or shuffling. This shuffles the order of 
independent encryption operations to increase SCA resistance in a similar way to the shuffling countermeasure 
from Nozaki et al (2021).  

The first encryption flow related countermeasure uses dummy operations that are randomly inserted during 
encryption to reduce correlation between encryption operation and key, adding more noise (Shan et al, 2015). 
The second encryption flow related countermeasure is dynamic storage exchanging which counters CPA by 
exchanging the storage locations of intermediate data from two consecutive rounds. This prevents CPA from 
calculating the correct Hamming distance that it uses to determine correlation coefficients (Shan et al, 2015).  

SRCP was tested using DES and AES encryption against CPA and CEMA. CPA was unable to determine the 
encryption key after one million power traces against both DES and AES. CEMA was able to determine the DES 
encryption key after 27,679 traces, which is 36 times the amount needed for unprotected DES. CEMA was unable 
to determine the AES encryption key after 1.2 million traces as shown in the results of Shan et al, (2015). 
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5. Comparative Analysis of Countermeasures 
In this section, we compare the countermeasures discussed previously by compiling them into Table 2 and 
discuss potential areas of strength and areas of weakness. 

5.1 Variables 

We first establish the variables examined in Table 2 to determine the general strengths and weaknesses of the 
techniques. Type indicates whether the countermeasure was implemented using software or hardware. It is 
assumed that hardware implementation also requires some form of software implementation. SCA Type 
signifies the type of SCA the countermeasure was designed and tested against. Algorithm refers to the algorithm 
the countermeasure is trying to protect. Countermeasure type involves whether the countermeasure was 
designed to detect or prevent SCAs. Effectiveness represents how well the countermeasure responded to an 
SCA. These are the results from the research papers. Immunity describes a technique that was able to completely 
prevent the encryption key from being deduced during testing. Additional overhead refers to any additional cost 
in terms of power, area, storage, or performance that the implementation of the countermeasure may incur. If 
there was no stated overhead cost, it is represented by N/A versus None for a stated overhead cost of nothing.  

Scalability refers to the ease of implementing this countermeasure in existing computer systems. This is 
measured in terms of high, medium, and low. High means it will likely be easy to implement, medium means 
that it is likely challenging to implement, and low means that it is likely to be difficult to implement. Compatibility 
indicates how seamlessly the countermeasure can be integrated with other countermeasures. This is also 
measured on a scale of high, medium, and low. High means that it can likely be integrated with minimal difficulty, 
medium means that it is likely challenging but possible to integrate, and low means it is likely to be very difficult 
to integrate with other countermeasures. 

Table 2: Comparison of Countermeasures 

Counter-
measure Type SCA Type Algorithm 

Counter-
measure 
Type 

Effectiveness Additional 
Overhead Scalability Compatibility 

Shuffling Software CPA MLP Prevention Immunity from 
1,000 traces N/A High High 

ML On-Chip 
Security 
Network 

Hardware Power, EM N/A Detection 

90% accuracy 
detecting 
Power and 
EM-SCAs 

Variable, 
AI/ML 
training 

Low Medium 

BIM Hardware CPA AES-128 Detection 
Detection in 
22.020 ms at 
8.26 Ω 

400 mW at 
5VDD 

Medium High 

EoH Hardware Power N/A Detection, 
Prevention N/A AI/ML 

training Medium Medium 

ANI Hardware CPA AES-128 Prevention 
Immunity from 
>1 million 
traces 

1.23x 
additional 
power 
overhead 

Low High 

FRIES 
Noise 

Generator 
Software EM AES-128 Prevention No correlation 

found in tests 

100% CPU 
usage on all 
cores but no 
lag from 
device 

High High 

Counter-
measure Type SCA Type Algorithm 

Counter-
measure 
Type 

Effectiveness Additional 
Overhead Scalability Compatibility 

CEASE Hardware EM Agnostic Detection 
Detects EM 
probes at >1 
mm 

4 on-die 
300µm 
metal plates 

Low High 

EO-Shield Hardware CEMA, FIB AES-128 Detection, 
Prevention 

Alerts if shield 
is broken, 
immunity from 
1,000 traces 

1.75% area 
increase, 
max 9.74% 
power 
increase 

Low Medium 
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Counter-
measure Type SCA Type Algorithm 

Counter-
measure 
Type 

Effectiveness Additional 
Overhead Scalability Compatibility 

SRCP Hardware CPA, CEMA AES, DES, 
RC6, IDEA Prevention 

Immune to 
CPA & CEMA 
after 1 million 
traces for AES 

6% power 
increase, co-
processor 
placement 

Medium High 

5.2 Strengths 

A common trend between several of these countermeasures is noise generation/injection. The strength of noise 
generation is its versatility. Because noise generation can typically be generated using only software, it can be 
applied to various cryptographic systems without major redesign or hardware modifications.  

The majority of these countermeasures have low additional overhead. Many of them increase the overall power 
usage, but that is expected for these countermeasures, since many of them involve performing random 
operations, which takes more power. Low overhead countermeasures are necessary to ensure that the primary 
functions of the underlying system are not compromised.  

A strength of software-based countermeasures is their high scalability ratings due to the ease that software can 
be added to existing systems. The overall cost of building and adding software-based countermeasures is lower 
than creating precise hardware. Additionally, if an update is necessary, software can be easily changed.  

A notable strength of the surveyed countermeasures is that the average compatibility is between medium and 
high. Being able to combine different countermeasures will only improve security because an attacker will not 
stop simply because their initial attempt at CPA did not work. Additionally, a detection countermeasure could 
be combined with a prevention countermeasure to increase efficiency so the prevention is only active when an 
SCA is detected. An example of this is combining CEASE with ASNI so that ASNI only activates when CEASE detects 
a probe nearby, thereby reducing overall power draw.  

A strength of many of the countermeasures is how they are algorithm agnostic. This is not apparent upon initial 
view of Table 2, but a deeper look into their design shows that the implementation of countermeasures does 
not rely on specific encryption algorithms to protect against SCAs. This likely allows the countermeasures to be 
used for all common encryption algorithms. This will allow for higher versatility and future proofing for when 
new encryption algorithms are developed as the countermeasures will not need to be adapted to them. 

5.3 Weaknesses 

Looking at Table 2, an apparent weakness for hardware-based countermeasures is scalability. It is, on average, 
low because applying a hardware upgrade to existing systems is likely to be difficult, especially due to the 
diversity of processors that are used in commercial products. For example, the ASNI countermeasure requires 
embedding the encryption engine into the SAH and it is unclear if most encryption engines are compatible with 
the SAH. Several of these countermeasures attempt to make use of hardware that is likely present on the system; 
however, there is no guarantee that the system in question will have the necessary hardware. 

A potential weakness of software-based countermeasures is that the new software could have errors or exploits 
that are vulnerable to traditional types of hacking, such as zero-day vulnerabilities or malware. Additionally, 
since pure software countermeasures use the existing resources of the system, it could impact performance due 
to the different computational operations being done. This is easily seen with the Frieslaar et al (2018) FRIES 
noise generator, where the stated overhead is 100% CPU usage, which if implemented on other systems could 
slow overall performance.  

Looking specifically at the detection techniques, their major weakness is that they only detect. While useful, it 
does not make it any more challenging for the attacker to recover the encryption key, which is why having high 
compatibility is beneficial, as mentioned in the strengths section above. 

For countermeasures that implement AI/ML, they are each trained on data specific to the system. Implementing 
these countermeasures on other systems likely requires collecting new training data and running the AI/ML until 
they are properly trained. This adds additional overhead and complexity to the overall implementation not 
discussed in the papers. 
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6. Future Work 
Several areas of future work can be explored based on the findings of this survey. Efforts should focus on 
improving the scalability of hardware-based countermeasures for integration into commercially available 
systems, perhaps by utilizing hardware more likely to be on commercial systems. Optimizing software-based 
countermeasures to reduce impacts on system performance and continuous testing to mitigate potential 
vulnerabilities in code is crucial for countermeasures to be effective on a large scale. Further research into 
combining detection and prevention techniques can create more comprehensive and efficient 
countermeasures. Finding additional ways to advance AI/ML-based countermeasures can enhance adaptability 
as they train and learn. The pursuit of these research directions may result in the development of more efficient, 
effective, scalable, and adaptable SCA countermeasures. 

7. Conclusion 
This survey provides an overview of power and EM-based SCAs and their respective countermeasures. By 
consolidating existing research, we highlight the strengths and weaknesses of various techniques, offering 
valuable insights into their effectiveness, scalability, and compatibility. The comparative analysis underscores 
the need for low-overhead solutions that do not compromise the primary functions of the system and the 
benefits of having algorithm agnostic protections. While the surveyed countermeasures offer significant 
strengths, they have notable weaknesses. Hardware-based countermeasures face scalability and compatibility 
challenges, while software-based solutions can introduce new vulnerabilities and detrimentally impact system 
performance. The integration of detection and prevention techniques, as well as advancements in AI/ML-based 
countermeasures, present promising directions for future research. Combining multiple countermeasures and 
leveraging their strengths can enhance overall device security, providing robust protection against SCAs while 
maintaining system efficiency and functionality. This approach ensures that security measures are both effective 
and practical, potentially resulting in the development of more resilient cryptographic systems. 
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