Curriculum Design in Higher Education: A Reflection

Kemlall R Ramdass and Kgabo Mokgohloa
University of South Africa, Johannesburg, South Africa

ramdakr@unisa.ac.za
mokgok@unisa.ac.za

Abstract: The ideology of curriculum design is believed to be the core of teaching and learning, yet it is in direct opposition to current notions of curriculum development. The contextual factors that underpin teaching and learning are derived from curriculum design. The principal factors that influence what is being taught may be categorised into three levels: the macro, meso and micro. At the macro level, there are national and international influences such as globalisation, massification, and marketisation. Also, socio-economic, and political influence may be included. At the meso-level the Department of Higher Education and Training (DHET) and institutional level influence is forthcoming. Issues such as policies, culture, location, student profile and so forth are examined. Also, external influence from employers, professional bodies, accreditation bodies, quality agencies as well as political redress is evaluated. The micro-level examines individual academics and support staff concerning personal theories, beliefs, and professional knowledge. Systems theory in the educational context views the institution as a system where there is an interaction of variables of input, process and output that enable learning to take place. Because of the complexity and nature of curriculum design, there is limited change in this critical sphere of the education system. This paper reflects on the design and development of a curriculum in an open distance learning higher education institution.

Keywords: Curriculum Design; Re-Engineering; Higher Education

1. Introduction

The digital era is bringing about fundamental changes in all aspects of education experienced throughout the world. It is changing the role of teachers who were the primary source of content knowledge and the role of students who were taught to be ardent listeners. Technology enables both the teacher and the learner to discover new sources of knowledge that have become more accessible from authentic sources. There is a real potential for ICT to add value to the education system. New methods and models of learning and innovation, entrepreneurship, creativity, and collaboration both nationally and internationally are enabled through ground-breaking technological advancement. It is important to note that this applies to all educational institutions, both ODL and face-to-face institutions. A holistic overview of the nature of the organisation as a comprehensive, flexible and accessible (in terms of enabling students to study) open distance learning public higher education institution in South Africa. In terms of institutional differentiation, the organization is a comprehensive university that practices ODL pedagogy through a blended approach. Structure, culture, and agency are fundamental prerogatives in the implementation of the curriculum provide a critique of the qualification: Diploma in Engineering Technology and the practices in the institution through key concepts and theories as well as the relationship between disciplinary structures and curriculum development.

2. Literature Review

Curriculum design is the core and basis of teaching and learning, yet it is in direct opposition to current notions of curriculum development where there are no discussions regarding this very important topic. The contextual factors that underpin teaching and learning are derived from curriculum design. The principal factors that influence what is being taught may be categorised into three levels: the macro, meso and micro which are discussed below.

- Macro - National and international influences such as globalisation, massification, and marketisation. Also includes socio-economic and political influence.
- Meso-DHET and Institutional level influence include issues such as policies, culture, location, and student profile. Also include external influence from employers, professional bodies, accreditation bodies, and quality agencies as well as political redress.
- Micro - Individual academics and support staff concerning personal theories, beliefs, and professional knowledge.

The question is what does the teacher teach without a curriculum? D’Andrea and Gosling (2005) view the teaching and learning process as a relationship between students, teachers and support functions. It is important to note that all three variables contribute significantly to an enabling environment for teaching and learning to be successful in ODL. Biggs (1999) postulates the interactive systems approach in teaching and
The systems approach in the educational context views the institution as a system where there is the interaction of variables of input, process and output that enable learning to take place. Given the complexity and nature of this curriculum, there has been limited change over the years. The curriculum is driven by systems theory and administered by policies to structure the process of curriculum design. The introduction of national notions for curriculum development postulated by the CHE before elaborating on the organisations’ stance is elaborated.

Structure, Culture and Agency Applied

The Council of Higher Education’s underlying principles on curriculum

The CHE proposed curriculum structure is underpinned by principles that imbibe the full student learning experience in the transformation of higher education that is responsive, appropriate and consistent; these principles are outlined below.

- **Fitness for purpose**: The focus here is on access to success through additional formal time that meets the requirement of providing a supportive and preparatory role in bridging the gap between secondary and higher education. The second issue is mastery of curriculum and learning experiences that add breadth to the enhancement of graduate attributes;

- **Flexibility**: The objective in this instance is the accommodation of diversity in the educational context. The curriculum design advocates flexible parameters in terms of starting points and progression pathways due to the divergent levels of preparedness among students;

- **Diversity of pathways and duration**: Formal time in undergraduate qualifications must be specified in terms of academic years to meet funding and planning imperatives as well as the variation in the levels of preparedness among students;

- **Design based on the needs of the majority of students**: The view here is based on increasing formal time by one year where equity, success and throughput would be improved as confirmed by curriculum analysis;

- **The curriculum must accommodate different levels of preparedness**: The notion here is the accommodation of the divergent levels of preparedness among students through flexibility and comparability in the structure of programmes in terms of national and international benchmarks;

- **Flexibility in institutional implementation within a common adoption of the proposal**: Flexibility in the structure would address the variant needs of students as well as equity of outcomes and graduate quality;

- **Extra curriculum space to be used for augmentation, not increasing the volume of content**: The focus here is on flexibility as institutional accountability in terms of output and outcomes;

- **Curriculum enhancement must be provided for**: This looks at the efficiency and effectiveness of curricula in the enhancement of graduate attributes;

- **Putting student learning first**: Student-centered curricula through flexibility should enhance the student experience in terms of outcome quality (CHE, 2013). I then contextualise the curriculum policy.

Luckett and Shay’s (2020) model provide clear articulation in terms of knowledge progression in a South African context in higher education where it is developed through experiences of an epistemically diverse curriculum. The building blocks of knowledge start from a disciplinary context and lead progressively to epistemic knowledge building which is of extreme importance in the engineering discipline. It may be seen as progressive and aligns students and lecturers as agents in the process of re-contextualisation. The process of knowledge building enables (re)interpretation, reconstruction, and re-contextualisation through cultures, power relations and socialisation in the curriculum. Luckett’s view of the curriculum as a supplement to Toohey (1999) in the 5-step process that entails the discipline-based approach, performance and systems-based approach, personal relevance approach, cognitive approach, and the socially critical approach (Toohey, 1999). Toohey (1999) mentions in his final stage of development that the goal of graduates is to attain a level of self-realisation in a social context. This entails that student should reflect, critique, develop arguments and defend positions. The aim is to take autonomous action to eradicate social disparities. The organisation draws on Luckett and Toohey’s models on the social character of knowledge assimilation as the focus on the epistemology of curriculum provision (Luckett 2009;2016; Toohey 1999).

Effective curriculum development requires a systematic understanding of the strengths and weaknesses of students that come from a diverse range of backgrounds. In ODL, students are given more time (in years) to
complete their qualifications. It is observed from this evaluation that the curricula are overloaded with disciplinary content which is counterproductive in engineering programmes. In this case, regular evaluations need to be conducted to determine the relevance of the curriculum. It is important to note pedagogical development has relevance from an ODL perspective in structural changes to curriculum reform. It was observed that existing curricula presume that students possess the background knowledge to be successful in their studies. Curriculum designers find themselves facing challenges to be innovative in maintaining curriculum coherence at Unisa as our major challenge is our pass rates, especially in the engineering programmes (Scott et al, 2007).

Literature suggests that one size does not fit all as students come from varied backgrounds which ground how they understand concepts in the context of teaching and learning. Literature from several authors converges on the need to streamline curriculum to innovatively respond to realities faced by society, the need for agility and fitness of purpose cannot be over-emphasized.

3. Research Methodology

Al Zefeiti and Mohamad (2015) suggest that research methodology is a framework of a research strategy that outlines the manner a study is to be undertaken. It covers an arrangement of principles and philosophical worldviews which grounds the research questions and influences the research methods to be executed. Kothari (2004) suggests that research is a systematic inquiry into suitable material in the area under consideration. Saunders et al. (2009) coined the research onion approach to research methodology with the first layer as the philosophical worldview, followed by the research approach, then research strategy, research methodological choice, time horizons and lastly, data collection procedure and analysis tools. The onion research framework is depicted in Figure 1.

![Figure 1: The research onion (Saunders et al.)](image)

This study adopted an interpretivist philosophical worldview which grounded the study to follow an inductive approach. A case study research strategy was adopted because the phenomenon under study required a reflective approach to the qualitative data at hand. Academicians are presumed to be competent in their field of expertise, which is inclined towards their area of research. It is imperative to be able to reflect not only on practical aspects of research but also from a cognitive mental state that enables the construction of meaning through practice. Reflection provides an environment where one can participate in learning through thoughtful relationships with everything around it and is practiced in qualitative research. Data were assimilated through academic literature and reflection on the practices of teaching and learning in the organization as well as through meetings and discussions.

4. Discussion and Findings

4.1 The Curriculum Policy

The Curriculum Policy (Curriculum Policy, 2010) provides the framework for all curriculum-related matters in the University. As a point of departure, the researcher offers an interpretivist definition of curriculum from a reflective point of view and defines it as “As a set of learning experiences constituting a qualification or module” and includes key aspects of teaching and learning such as:
• What is learnt – content
• Why is it learnt – rationale and underlying philosophy
• How it is learnt – the process
• When it is learnt – the structure of the learning process
• How the learning will be demonstrated in creative ways and achievement similarly assessed.

In the context of the organization curriculum is planned learning experiences in which the student is exposed to content through a structured process. The outcome of learning is demonstrated via assessment methodologies. The curriculum is aligned with both national and international benchmarks in terms of policy requirements.

4.2 Principles Guiding Curriculum Development

Essentially the curriculum is developed by the academic with input from the Directorate for Curriculum and Learning Design (DCLD) considering all essential stakeholders. In this section, a synopsis of the points that are considered in curriculum development is considered. The points are considered important and also clearly visible in the operations of the institution. It may be observed that the curriculum policy is aligned with the CHE imperatives.

• Responsiveness – In context, the notion of responsiveness is used in a descriptive sense and refers to the awareness of societal expectations given national and international contexts that universities are required to respond to (Moll, 2004). The curricula are developed taking several variables into account, namely national context, CHE context, international context, professional body context, socio-economic context, industry context, and disciplinary and student context. The internal mechanisms that monitor these contexts are the Directorate for Curriculum and Learning Design (DCLD). The planned curricula are nationally and internationally recognized and structured to ensure a reasonable chance of success.

• Student-centredness – the student is the centre of the entire learning process and becomes an ambassador for the institution through feedback on curriculum experiences carried out through research. Students are invaluable in the development of curricula as current epistemologies and prior learnings as well as cognisance of experiences and expectations are an integral part of curricula. Invariably economic responsiveness is gained through students’ engagement with the economy through their labour and entrepreneurial activities (Moll, 2004). In addition, Luckett (2010) postulates that students achieve agency through new ways of thinking, acting and being in the learning process that enables self-transformation.

• Accountability – The academic department is accountable to Unisa for the adherence to policy and processes prescribed for academic integrity and teaching and learning quality. Higher education policies allude to academic accountability in curriculum design, which at Unisa is administered through the (DCLD). Unfortunately, staff qualifications at DCLD are varied and I think it would be important for them to pursue a course such as the PG Dip in HE. Curriculum design is not part of the Centre for Professional Development at Unisa which is a concern for me. The engagement of DCLD, CPD and QA is imperative to enhance the status of curriculum design (CD) at Unisa. In addition, there is a need to base curriculum development on the reflective and responsible judgement of academics (Luckett, 2001).

• Curriculum structure – The development of curricula in an ODL context also considers notional hours and credits through institutional guidelines. All formal qualifications are approved by the CHE and registered with SAQA, therefore cognizance is taken of the portability of qualifications and learning pathways. Articulation is an important facet of curriculum development. Curriculum review and the review cycle consider comparability, response to HEQF, benchmarks, professional bodies, SETAS, student and employer feedback and market trends. Unisa follows a team approach (discussed later) in curriculum development with consultation from all internal and external stakeholders. A range of resources are provided to enable students to be successful in their studies. Curriculum implementation evaluates the financial viability, alignment to the vision and mission and market penetration as well as the pedagogy and technology applicable for the qualification. Unisa’s RPL policy provides guidelines on the recognition of prior learning. The WIL (work-integrated learning) policy is also an integral part of curriculum development at Unisa.

• Quality assurance – The institutional audit and programme accreditation aim to assure the quality of qualifications with the objective of continuous improvement, but the progress is limited. The responsibility for QA is distributed to all the relevant structures such as programme coordinators,
DCLD, academics, HOD, School Directors, and executive deans of colleges. College tuition and learning committees evaluate the appropriateness and readiness of proposals for curriculum design (CD) that are signed off by all the respective departments mentioned above. College Boards approve CD proposals and submits them to the Senate Tuition and Learning Committee for final approval based on the College’s academic and strategic plan.

- **Envisaged Impact** – The curriculum policy (structure) aims to ensure a coherent transformative impact in the development of curricula in its endeavor to affect the effectiveness of the process of delivering responsive education to students. The policy is aligned with the tuition policy, assessment policy and other policies to a greater or lesser degree (Curriculum Policy, 2010). The DCLD is part of DISS and is a support function.

In addition, the policy addresses the following key variables as stipulated by the Higher Education Qualifications Sub-Framework (HEQSF) which are:

- Appropriateness of qualification types
- Coherence and consistency in designation and credit value
- Articulation pathways between undergraduate and postgraduate qualifications
- Appropriateness of the number of postgraduate qualifications
- The extent to which qualifications support expanded access (Van Niekerk, 2013).

4.3 Curriculum Development and Monitoring

To adhere to the curriculum policy for the development and review of the curriculum the university has provided the relevant structures and agency for the implementation of the curriculum policy. This structured approach enables accountability and responsibility to ensure that the highest authority in the academic environment – the VP academic ensures a diligent process.

The structural and agential focus is based on the framework for a team approach in the development and implementation of curriculum and learning development. Thus, the team includes a senior academic appointed by the chair of the department (COD), lecturer of the programme, department of curriculum and learning design (DCLD), department of quality assurance and promotion (DQAP), directorate of instructional support and services (DISS), department of career counselling and development (DCCD), department of programme accreditation and registration (DPAR). The deliverables of the team approach are to develop ODL curricula, evaluate programme design, curriculum planning of modules, learning design, and learning development. A certificate of due diligence is completed by all involved to ensure that the framework is implemented as per the principles of curriculum development of Unisa as well as the Council on Higher Education.

In addition, the Strategic Plan 2015 revisited point 1 and focuses on the revitalization of the PQM in conjunction with teaching and learning which covers the following issues:

- The simplification and streamlining of the PQM
- The review and development of curricula that promotes creativity, innovation and ‘graduateness.’
- The development of an integrated student support model
- The revision of assessment processes and practices that creates a balance between formative and summative assessment in the view of constructive alignment

The conceptualisation and contextualisation in the implementation of an ODL teaching and learning model (Strategic Plan, 2015).

4.4 Programme Selection and Evaluation

A programme that was introduced in 2017 by the College of Science, Engineering and Technology called the Diploma in Engineering Technology: Industrial. As the task calls for critique, an evaluation of the programme highlighting enabling and constraining factors in the practices, theories and concepts concerning the programme are considered. Attention is drawn to Luckett’s model of an epistemically diverse curriculum to provide a critical analysis of the programme. The 4 spheres of knowing, namely foundational competencies which concerns the knowing of disciplinary knowledge, practical competence which entails knowing how – the application of disciplinary knowledge, personal competence which concerns learning through reflexivity, and reflexive competence, which entails the development of meta-cognition through thinking epistemically, contextually and systemically in the resolution of engineering problems (Luckett, 2001).
Luckett’s model provides clear articulation in terms of knowledge progression in a South African context in higher education where it is developed through experiences of an epistemically diverse curriculum. The building blocks of knowledge start from a disciplinary context and lead progressively to epistemic knowledge building which is of extreme importance in the engineering discipline. It may be seen as progressive and aligns students and lecturers as agents in the process of re-contextualisation. The process of knowledge building enables (re)interpretation, reconstruction, and re-contextualisation through cultures, power relations and socialisation in the curriculum. Luckett’s view of the curriculum as a supplement to Toohey (1999) in the 5 step process that entails the discipline-based approach, performance and systems-based approach, personal relevance approach, cognitive approach, and the socially critical approach is considered (Toohey, 1999). Toohey (1999) mentions in his final stage of development that the goal of graduates is to attain a level of self-realisation in a social context. This entails that student should reflect, critique, develop arguments and defend positions. The aim is to take autonomous action to eradicate social disparities. Unisa draws on Luckett and Toohey’s models on the social character of knowledge assimilation as the focus on the epistemology of curriculum provision.

Effective curriculum development requires a systematic understanding of the strengths and weaknesses of students that come from a diverse range of backgrounds. In ODL, students are given more time (in years) to complete their qualifications. It is observed from this evaluation that the curricula are overloaded with disciplinary content which is counterproductive in engineering programmes. In this case, regular evaluations need to be conducted to determine the relevance of the curriculum. It is important to note pedagogical development has relevance from an ODL perspective in structural changes to curriculum reform. It was observed that existing curricula presume that students possess the background knowledge to be successful in their studies. Curriculum designers find themselves facing challenges to be innovative in maintaining curriculum coherence at Unisa as our major challenge is our pass rates, especially in the engineering programmes (Scott et al, 2007).

The evaluation of this programme suggests that there is a relationship between the object of the study and the form of knowledge that is produced. Thus, the knowledge comes from the knower with incremental changes through new experiments and justifications. Extrinsic pressures ensure that the curriculum is internationally competitive and that there is no compromise in any way (Luckett, 2010).

Knight (2001) mentions that curriculum should take on the process approach due to its complexity. The process approach is a strategy that evaluates the components of input, process and output to determine their value in the transformation process. In this scenario, the quality of input, the efficiency and effectiveness of the transformation process and the quality of the output are important variables. Curriculum design and development play a major role in the calibre of students that emanates from the transformation process. The relationship between the student and facilitator is very interactive through ODL technologies, however, the student needs to be proactive to facilitate the learning.

The point made articulated is that the curricula in this programme is coherent and progressive and is appropriate to novices. There seems to be a malalignment between the outcomes and content. Due to the very nature of the development of outcomes, the focus is often lost as to the core of the curriculum. Thus, “the process approach puts the casuistry and hypotheticals of outcomes in their place and brings questions about good learning to the fore” while aiding good teaching and learning in the field of engineering (Knight, 2001:370).

The curriculum structure is seeking to create balance in content, assessment and envisioned learning outcomes through interaction with the subject matter with a view of encouraging insights and reflection (Hussey and Smith, 2003). The elements of the curriculum influence and interact with each other through the notion of constructive alignment and synergy that links the constructivist understanding of students in appropriate learning activities (Biggs, 1999). In addition, it has been noted that soft skills have become a prerogative in the workplace and are considered part of the curriculum. Key competencies are becoming fundamental to curriculum development which is prominent in this qualification (Priestley, 2011). Baskar’s critical realism theory advocates the development of heuristics and its application in the engineering environment that faces continuous change. It enables the tracking of changes through epistemological means.

The 360 credits diploma programme is at NQF level 6 and is consonant and responsive to the institution’s mission, forms part of institutional planning and resource allocation meets national requirements, and the needs of students and other stakeholders, and is intellectually credible. It is designed coherently and articulates well with other relevant programmes, where possible.
4.5 Curriculum Responsiveness in the Context of the Programme

The qualification is responsive to the economy and society as it addresses some of the training needs indicated in the Higher Education & Training Framework for the National Skills Development Strategy (NSDSIII). Also, the qualification adheres to HEQSF in terms of appropriateness, coherence and consistency, articulation pathways and facilitates equity of access in higher education as gleaned from the document which is not publicly viewable at present (McGrath and Lombard, 2014).

Skilled engineering technicians are required to meet the developmental needs of the country in all service, manufacturing, and industrial production fields. Responsiveness to local context considers skills development, diversity, equity, redress and increasing access and the extended curriculum. The programme is responsive to international regulatory requirements through ECSA and recognized by the Dublin Accord. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

This qualification is primarily vocational, or industry oriented, characterised by the knowledge emphasis, general principles and application through technology transfer. The qualification provides students with a sound knowledge base in industrial engineering and the ability to apply their knowledge and skills to a career in industrial engineering while equipping them to undertake more specialised and intensive learning. Holders of this qualification are usually prepared to enter a specific niche in the labour market. The programme is articulated to NQF level 10 so that it provides lifelong professional development as students are required to engage with complexity and changing technology in the engineering environment in our newly constructed laboratories. The qualification is economically responsive to the economy and society as it addresses some of the training needs indicated in the Higher Education & Training Framework for the National Skills Development Strategy (NSDSIII). Skilled engineering technicians are required to meet the developmental needs of the country in all service, manufacturing and industrial production fields.

In terms of cultural responsiveness, ELO 6 (engineering learning outcome) in the Form 1 document concerns the ability of engineers to communicate effectively, both orally and in writing within an engineering context. They should also demonstrate knowledge and understanding of the impact of engineering activity on society, the economy, the workplace and the physical environment, and address issues by defined procedures. The 27-credit module is included in year one in the section of complementary studies specifically dealing with aspects related to the ability to communicate effectively at all levels both inside and outside the organization and be sensitive to cultural issues when dealing with a society which would be done in the laboratory through role plays and through team-based learning which involves simulation. The outcome is assessed through both summative and formative assessments. The process of knowledge transfer in a language that is suitable to all groups and where everybody reflects the same meaning is imperative.

The diploma in engineering technology is responsive to the knowledge discipline through the engagement of students in “systematised forms of enquiry” that considers Luckett’s model that is broken into 4 spheres and alludes to discipline-specific knowledge to knowledge application. The academic staff possesses the disciplinary qualification and expertise for the programme, and many are engaged with the scholarship for teaching and learning through research engagements. Students are facilitated online in the way knowledge is produced in this discipline and the teaching-learning environment and pedagogy. There is a high degree of practical application of theoretical concepts in laboratories, simulated and real work environments. However, it is unclear as to the extent to which students understand and develop competence in discipline-specific knowledge. The development of research skills is lacking until the third and four years of study in which students are expected to do research projects. I firmly believe that research skills should be introduced in the first year of study and act as a scaffold in all years of study as per Luckett’s model. Moll’s suggestion of “close coupling between the way knowledge is produced” in the discipline and the way students are educated in the discipline would enable new knowledge in the field of engineering (Moll 2004).

At this stage, language may a constraining issue, but it is believed that proficiency in English would enable a student to be able to communicate in a global arena. At this stage, experiments are being conducted to translate study materials into other languages. Professional bodies play a major role in curriculum development in engineering and enable the development of communities of practice that are in place in the engineering field such as the South African Institute of Industrial Engineers (SAIIE).

The diploma provides a foundation that enables Mode 1 knowledge as described by Toohey (1999) as key concepts where students should develop a representative knowledge of the field; breadth rather than depth as well as propositional knowledge as per Luckett (2001). The purpose and range statements allude to position
teaching and learning where the student receives information and knowledge from the lecturer. This is based on traditional cognitive learning that is discipline-based that enables students to construct their understanding from content. The discourse changes in the 3rd and 4th-year levels to enable students to apply themselves in practice through practical projects.

This new programme design serves the organisation’s objective to sustain the development of academic programmes following the new standard set by the professional body, a result of the new HEQSF and aligned to the framework. The 360 Diploma in Engineering Technology: Industrial supports the improvement of the stature and quality of the scientific and technology programmes offered. As an ODL institution, the programme will be part of a group of new Diplomas in Engineering Technology that will increase the institutional reputation and attract more international students. The qualification provides aspiring industrial engineering technicians with the knowledge to operate and improve industrial engineering processes in an efficient, safe and profitable manner. The qualification addresses the objectives of the NQF by providing the technician qualification at NQF level 6.

Professional Engineering Technicians apply established and newly developed engineering technology to solve well-defined problems and develop components, systems, services, and processes. They provide leadership in the application of technology in commercially effective operations. They work independently and responsibly, applying judgement to decisions arising in the application of technology to problems and associated risks.

Because the organisation is dealing with an international audience, the “Africanisation” of content is a difficult challenge, especially in the engineering discipline. As the programme in question requires international standing through ECSA, it is required to meet the respective guidelines on curriculum offerings.

There are formative assessments in the form of portfolios and assignments and summative assessments in the form of examinations. This may change in the years to come as new developments are being considered. The final assessments of modules are through examinations which are required by the professional body. However, more discourses in the area of alternative assessments through engagement with the professional body would assist in terms of student proficiency.

The understanding is that the diploma curriculum provides a platform that enables students to acquire diverse kinds and complexities of knowledge and competency. This is achieved through the different years of study. It embodies Luckett’s and Toohey’s model of knowledge development through the various quadrants for an epistemically diverse curriculum.

4.6 Institutional QA principles and processes

The organisation is required, as part of its statutory obligation to the CHE (HEQC) to deliver on its mandate in the provision of quality education through ODL. Therefore, modules are required to be evaluated in terms of disciplinary changes as well as responsiveness to all stakeholders to address deficiencies. In this endeavour, the Directorate for Strategic Planning and Quality Assurance (DSPQA) in conjunction with the Bureau of Market Research (BMR) designed an inclusive quality evaluation instrument to primarily evaluate students learning experience from an ODL perspective.

An integrated approach was used in response to accountability to stakeholders such as students, lecturers, moderators, markers, tutors and student support in all its facets through dimensions, criteria and standards relating to teaching and learning at Unisa. Student support included the following:

- Student support (Dean of Students, Student Funding, ARCSWID, Student Development, Regions, DISS, Library, DCCD, RPL, WIL, Invigilators, Student Admissions and Registration (DSAR), Graduations and Records Management, Student Assessment Administration (DSAA), Accreditation, CCM)
- Primary academic support (Academic Planner, Tuition and Facilitation of Learning, Research Department, DCLD, ICT, Despatch, Planning and Coordination of Study Material, Print Production, Language Services, Unisa Press, Sound, Video and Photography)
- Institutional support (DSPQA, HR, Estates, Protection Services, Finance, Procurement, Legal Services, Risk Management, Employment Equity and Transformation, Internal Audit, Foundation, CPD).

The organization is guided by the Tuition Policy, the Framework for the Implementation of a Team Approach, and the ODL Policy in its endeavours for curriculum change with the university. The external stakeholders would
be the HEQC and ECSA as the two main bodies that can bring about change in the curriculum as well as the strategy of benchmarking. The evaluation of curricula is governed by the DSPQA which obtains feedback as to the performance of curricula. Ultimately, the chair of the Department (CoD) and the lecturers may make minor changes to the curriculum as required. Curricula are evaluated on a seven-year cycle throughout the university and changes are made accordingly.

It may be noted that curriculum is the “driver” of educational development in both basic and higher education in South Africa and requires rigorous engagement from all stakeholders. Constructive attempts are required for a transformational impact on the curriculum in South Africa.

5. Conclusion

The curriculum policy and its tenets which encompass curriculum development framework, curriculum development guidelines, curriculum development and monitoring, programme selection and evaluation, curriculum responsiveness in the context of the programme, and institutional QA principles and processes were presented. There is a need to drive curriculum through both theoretical underpinning as well as discipline-specific knowledge, and it is believed that organisational key players bring these parties together where there is an active reflection that promotes continuous improvement (Biggs, 1999; Diamond, 1998; Knight, 2001). In this process, student perceptions, teaching and learning in ODL, as well as assessment practices, be discussed. In addition, the roping in of alumni, industry and Seta’s would provide valuable input. In moving forward, it is believed that process mapping in curriculum rejuvenation should encompass what is called “division of labour” in Industrial Engineering. That is, breaking the job into manageable parts. In this case, it is proposed that:

- Curriculum visioning that would encompass the assessment of the curriculum
- Curriculum development using SWOT analysis as a starting point
- Curriculum alignment in terms of alignment of the complete programme (Wolf, 2007)

References