What do we Evaluate in Serious Games? A Systematic Review

Ernesto Pacheco-Velazquez 1, Lucia Rabago-Mayer 2, Andre Bester 2 and Virginia Rodes-Paragarino 1

1Institute of the Future of Education, Tecnologico de Monterrey, Mexico
2BMS Laboratory, University of Twente, Enschede, The Netherlands

epacheco@tec.mx
l.m.rabagomayer@utwente.nl
a.n.bester@utwente.nl
virginia.rodes@tec.mx

Abstract: Serious games have emerged as an invaluable tool in education, revolutionizing the way students learn and engage with complex concepts. These games combine entertainment with educational content, creating immersive and interactive experiences that enhance learning outcomes. This strategy has positioned themselves as a powerful educational tool recommended for the new generations due to their benefits in terms of motivation, engagement, active learning, development of skills, and adaptation to diverse learning styles. By integrating serious games into educational programs, educators can enhance meaningful learning, foster relevant skills, and prepare students to tackle the challenges of the 21st century. The evaluation of serious games is important for various reasons. For example, it helps determine if a serious game meets its educational objectives and truly promotes learning and the development of specific skills. It also provides feedback on the design, gameplay, effectiveness, and other aspects of the serious game, allowing developers to identify strengths and areas for improvement to optimize the learning experience. Evaluations help determine if the serious game appropriately caters to the needs and characteristics of users, if it is suitable for the target group, if it is accessible to individuals with different abilities, and if it provides an appropriate level of challenge to promote engagement and learning. Ultimately, evaluations provide validation and credibility to serious games as educational tools. This study shows a systematic review of the factors that appear most frequently evaluated, the methodology used, and discusses the possibility of adding new factors and points out the need to consider the opinion of other users to improve the evaluation of these resources.

Keywords: Educational innovation, Higher education, Serious games, Game-Based learning, Simulations

1. Introduction and Literature Review

Serious games (SG) have gained increasing attention over the years as they provide a unique way of engaging individuals in learning and training activities (Bellotti, Berta and Gloria, 2010). Learning games have been developed to provide an entertaining and engaging way for individuals to acquire knowledge and skills, while also promoting retention and transfer of learning. These games are designed to facilitate learning in a fun and interactive way, with a focus on enhancing engagement and motivation (Cheng, Huang and Hsu, 2020; Naul and Liu, 2020; Meij, Veldkamp and Leemkuil, 2020). On the other hand, there are authors who affirm that SGs help students to develop critical thinking skills (Madani, Pierce and Mirchi, 2017), improve retention (Bergeron, 2008), increase creativity (Riedel and Hauge, 2011), develop problem-solving skills and decision making (Pacheco-Velazquez, 2022).

One advantage of learning games is that they can provide a safe and controlled environment for learners to practice and apply newly acquired skills and knowledge. For example, simulations can be used to provide learners with an opportunity to practice complex tasks in a realistic setting, without the risks associated with real-world applications (Pacheco-Velazquez and Aguilar-Avalo, 2019; Deshpande and Huang, 2011). Furthermore, games can provide immediate feedback to learners, allowing them to learn from their mistakes and adjust their strategies accordingly (Bellotti et al., 2013).

Learning games can also be tailored to the individual needs and preferences of learners. Individualization, which refers to the customization of the game to the learner’s abilities, preferences, and learning style, has been found to enhance engagement and motivation, leading to more effective learning outcomes (Hamari and Tuunanen, 2014; Dobrovsky, Borghoff and Hofmann, 2019). This approach can also help to address the challenges of catering to the diverse needs of learners with varying levels of knowledge and skills (Pacheco-Velazquez and Viscarra-Campos, 2019).

It is important to take individual differences between players into account when designing a SG. Different people learn at different speeds and through different learning styles. Furthermore, players may use different strategies and play styles during the game, and their range of skills and abilities may vary (Xu et al., 2019; Sottilare and Gilbert, 2011). It’s also important to recognize that the player interacting with the game is dynamic, which can
lead to issues like loss of motivation or predictability. Considering the individual characteristics and the learning style of the players can affect the perception of the effectiveness of the game (Lindberg and Laine, 2018).

There are many factors that contribute to explaining the effectiveness of SG. In an investigation carried out by Calderon and Ruiz (2015) eighteen factors are listed: aesthetics and design; social impact; interface; player efficacy, motivation, behavior, attitude, emotions, satisfaction, enjoyment, commitment, acceptance, and performance; playability, learnability, and understandability; utility; and educational aspects. In addition to these factors, other studies have identified elements such as feedback, challenge, interactivity, and immersion as key components of SG effectiveness (Soflano, Connolly and Hainey, 2015; Boyle et al., 2016). Other authors have added to all these factors the importance of the setting, the integration of the game with learning, interaction, feedback, and game design (Faizan et al., 2019; Marsh, 2011).

However, there are still several unresolved issues regarding SGs. For instance, some researchers have supported the notion that there is no established methodology for measuring the effectiveness of SGs (Hersh and Leporini, 2019; Serrano-Laguna et al., 2018). Moreover, several factors are poorly defined, leading to confusion about how to measure them (Fokides et al., 2019b). Other researchers have argued that the evaluation of SGs’ functional components remains unclear (Zhonggen, 2019) or that it is biased (Connolly et al., 2012). Perhaps the most significant challenge is evaluating SGs. Given the complex nature of their development involving experts from various fields, it is essential to have robust evaluation frameworks that consider all relevant factors, or at least as many as possible (Fokides et al., 2019a). However, this task is nearly impossible due to the diverse genres of SGs, covering different subjects and targeting various user groups.

A very important consideration is to understand what is meant by the effectiveness of a SG. Some authors have focused their studies on specific factors. For example, the impact of SG on engagement and motivation (Kiunsi and Ferwerda, 2019). Others evaluated the role of interface, workload, and usability (Thorpe, Nesbitt and Eidels, 2019). Or the transfer of knowledge acquired during gameplay to real-life situations, which has been highlighted by researchers (Blumberg et al., 2013). Fokides (2019b) affirm that the existing literature on SG is fragmented in terms of the SG that were studied (including their learning content and genre), the context in which they were studied (including target groups and settings), and the factors that were considered. Moreover, there is a lack of research that considers many salient factors. As a result, more research is needed to determine which features are significant in shaping SG learning effectiveness, which can help to resolve ongoing debates about the role of certain factors.

2. Methodology

This study presents a systematic review of scientific literature on SG, focusing on the evaluation factors that researchers have used to assess different SG. The review was conducted following the guidelines of the PRISMA statement for conducting systematic reviews (Moher et al., 2009; Welch et al., 2016). The following sections will detail the different phases of the review process.

2.1 Systematic Literature Review

In this work, a systematic review of the published scientific literature on SG and their evaluation has been carried out. For its preparation, the guidelines of the PRISMA declaration for the correct performance of systematic reviews have been followed (See Fig. 1). The elaboration process will be detailed in its different phases.

Figure 1: Prisma Flow Diagram
2.2 Screening of Documents

Phase 1. Identification: The first searches were carried out in April 2023. The search was performed on the SCOPUS databases using the following parameters: TITLE-ABS-KEY: ((scale OR survey) AND (factors AND serious AND games)). The initial search yielded 275 documents.

Phase 2. Screening: The search was then narrowed down to only include documents marked as "All Open Access" resulting in 110 documents. Further narrowing the search to only include journal articles resulted in 88 documents.

Phase 3. Eligibility: The search was limited to articles published within the last three years (2021 to present), resulting in a final set of 40 documents.

Phase 4. Included: After reading the abstract, we recorded 20 documents.

The combination of terms that yielded the best results was the following: TITLE-ABS-KEY((scale OR survey) AND (factors AND serious AND games)) AND (LIMIT-TO (OA,"all")) AND (LIMIT-TO (DOCTYPE,"ar")) AND (LIMIT-TO (PUBYEAR,2023) OR LIMIT-TO (PUBYEAR,2022) OR LIMIT-TO (PUBYEAR,2021))

A summary of the inclusion and exclusion criteria is shown in Table 1.

Table 1: Inclusion and Exclusion Criteria

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Access</td>
<td>Year of Publication: 2020 or before</td>
</tr>
<tr>
<td>Article in Journal</td>
<td></td>
</tr>
</tbody>
</table>

3. Results

A summary of the results we found in the systematic review is presented in Table 2.

Table 2: Summary of results

<table>
<thead>
<tr>
<th>Author and Year</th>
<th>Study application topic</th>
<th>People considered in the study</th>
<th>Methodology (Data Source)</th>
<th>Variables under study</th>
</tr>
</thead>
<tbody>
<tr>
<td>You et al., 2023</td>
<td>Medicine. Health Care.</td>
<td>Women with cancer</td>
<td>Self-reported surveys and data collected from tablets.</td>
<td>Engagement</td>
</tr>
<tr>
<td>Brill et al., 2022</td>
<td>Psychiatry, Medicine, Health Care.</td>
<td>Patients with gambling disorder</td>
<td>Magnetic resonance imaging.</td>
<td>Emotional Control</td>
</tr>
<tr>
<td>Mittmann et al., 2022</td>
<td>Computer Science, Mental Health.</td>
<td>The study focuses on pre-adolescent children (10 to 12 years of age)</td>
<td>Surveys and questionnaires</td>
<td>Social Skill Trainings and Social and Emotional Learning</td>
</tr>
<tr>
<td>Wong et al., 2022</td>
<td>Nursing.</td>
<td>Higher education students in nursing and medicine</td>
<td>Scoring system with specific mechanisms</td>
<td>Teamwork and learning outcomes</td>
</tr>
<tr>
<td>Van Gaalen et al., 2022</td>
<td>Education.</td>
<td>Higher education students in dental and medical studies.</td>
<td>Selection and prioritization of factors on game preferences.</td>
<td>Identification of preferences for game features.</td>
</tr>
<tr>
<td>Mystakidis & Christopoulos, 2022</td>
<td>Education.</td>
<td>Teachers from STEM area.</td>
<td>Mixed research study involving a validated survey questionnaire instrument and an online debriefing session</td>
<td>Benefits of using technology in the classroom</td>
</tr>
<tr>
<td>Author and Year</td>
<td>Study application topic</td>
<td>People considered in the study</td>
<td>Methodology (Data Source)</td>
<td>Variables under study</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tanner et al., 2022</td>
<td>Finances, Ethics.</td>
<td>Higher education students in banking and finance</td>
<td>Using a study pre-test post-test questionnaire</td>
<td>Promote moral sensitivity in business. To examine the role of social pressure.</td>
</tr>
<tr>
<td>Bennis, Kandali & Bennis, 2022</td>
<td>Education.</td>
<td>PhD students</td>
<td>Surveys and questionnaires</td>
<td>Students Motivation. Generation of an adaptable learning game.</td>
</tr>
<tr>
<td>Herne et al., 2022</td>
<td>Information Technology, Education.</td>
<td>Stroke survivors</td>
<td>Results and score obtained in the simulator</td>
<td>Engagement</td>
</tr>
<tr>
<td>Janssen et al., 2022</td>
<td>Health Care.</td>
<td>Adult patients undergoing chemotherapy</td>
<td>Semi-structured interviews</td>
<td>Breaking up the monotony of treatment.</td>
</tr>
<tr>
<td>El Machtani El Idrissi et al., 2022</td>
<td>Health Care.</td>
<td>Older adults with major neurocognitive disorder</td>
<td>System usability scale and Semi-structured interviews</td>
<td>Usability of the game</td>
</tr>
<tr>
<td>Suppan et al., 2021</td>
<td>Environmental.</td>
<td>Architecture undergraduate students</td>
<td>Questionnaire survey and participant observation complemented by interviews</td>
<td>Behaviour changes.</td>
</tr>
<tr>
<td>Gao, Guo and Jiang, 2021</td>
<td>Bioengineering.</td>
<td>Volunteer specialists in risk management/architecture/engin eering with more than 5 years of experience</td>
<td>Surveys and qualitative data.</td>
<td>Behaviour of users in a risk environment.</td>
</tr>
<tr>
<td>Cavalcanti et al., 2021</td>
<td>Psychology. Health Care.</td>
<td>Adolescents between 11 and 15 years</td>
<td>Surveys and questionnaires. Comparison of results between people who completed and did not complete the game.</td>
<td>Improved self-esteem, affect balance, emotional symptoms, behavioural problems, and hyperactivity</td>
</tr>
<tr>
<td>Hollerit et al., 2021</td>
<td>Technology. Applied Sciences. Neuroscience.</td>
<td>General population divided into two groups according to their age.</td>
<td>Data obtained from the near-infrared brain function imager</td>
<td>Games have a positive training effect on reducing cognitive function decline.</td>
</tr>
<tr>
<td>Ge et al., 2021</td>
<td>Education.</td>
<td>Students from introductory</td>
<td>Application of pre and post questionnaires.</td>
<td>Improve learning. Meaningful learning.</td>
</tr>
<tr>
<td>Author and Year</td>
<td>Study application topic</td>
<td>People considered in the study</td>
<td>Methodology (Data Source)</td>
<td>Variables under study</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Hummel et al., 2021</td>
<td>Rehabilitation. Health Care</td>
<td>Older adults with major neurocognitive disorder</td>
<td>System usability scale and semi-structured interviews</td>
<td>Usability of the game</td>
</tr>
</tbody>
</table>

4. Discussion, Conclusions and Future Works

Serious games find their primary applications in the areas of Health Care (50%) and Education (20%). In the realm of Health Care, the development of these games often incorporates technologies such as virtual reality or augmented reality. The number of research studies on SG in the healthcare field (medicine, nursing, or related areas) seems representative. The use of these games to prevent certain types of mental illness or to create attachment and loyalty to a treatment seems like a very interesting application of these resources.

The distribution of data sources in serious game research indicates that in 30% of the cases, the data is collected from users who belong to some type of school system, particularly higher education students. These students are often participants in educational interventions that utilize serious games to enhance learning experiences and develop specific skills within academic settings.

Additionally, in another 30% of the cases, the participants are patients who use the serious game. This highlights the significant role of serious games in the Health Care area, where they are employed as therapeutic tools or interventions to support patient care, rehabilitation, and health-related outcomes.

The data presented indicates that in the majority of cases (55%), data in serious game research is collected through questionnaires, surveys, or semi-structured interviews. These methods are commonly used to gather subjective feedback, attitudes, and perceptions of participants, providing valuable insights into their experiences and perceptions related to the game-based intervention.

In only 10% of the cases, a scoring system has been developed within the serious game itself, allowing for the measurement of the game's results. This scoring system is likely designed to objectively assess participants' performance, progress, or achievements within the game, providing quantifiable data on their in-game actions and outcomes.

Interestingly, in another 10% of cases, the data is measured using some form of tool that allows for the measurement of the participants' brain function. This could involve the use of neuroimaging techniques such as EEG (electroencephalography) or fMRI (functional magnetic resonance imaging) to study participants' brain activity during gameplay. This approach provides valuable neurophysiological data, enabling researchers to understand how the brain responds to serious games and the cognitive processes involved in the learning experience.

The diverse methods of data collection in serious game research reflect the multidisciplinary nature of the field and the different objectives researchers aim to achieve. While questionnaires and interviews provide insights into participants' perspectives and attitudes, scoring systems within the game enable objective performance measurement, and neuroimaging techniques offer a deeper understanding of the cognitive processes underlying the learning experience. This variety of data collection approaches enhances the overall comprehension and evaluation of serious game effectiveness and its impact on learning outcomes.

An important finding in the systematic review is that although SG is associated with educational purposes, most studies (more than 50% of them) look at changes in player behavior, motivation, or involvement. That is, most of these studies do not focus on measuring the gains associated with user learning, but rather on observing increased engagement, increased motivation, attitude changes, or behavior pattern changes.

The systematic review conducted on various studies involving the use of SG reveals a predominant focus on measuring the effectiveness of the games rather than the specific characteristics associated with them. Among the studies reviewed, only two investigations include user feedback on factors such as feedback, interactivity,
flow, challenge, attention, interest, involvement, clear instructions, among others (Herne, 2022; Van Gaalen et al., 2022).

It is also worth noting that, among these 20 articles, just one of these studies (Mystakidis & Christopoulos, 2022) considers making an evaluation of the tutors or teachers involved. It is crucial to evaluate not only the effectiveness of the SG on the end-users, but also on the educators who are using the game in their teaching. This can provide insight into how the game can be improved to better support the educators' teaching goals and help them to effectively integrate the game into their curriculum. It also highlights the need for more research to be conducted on the impact of SG on educators and their teaching practices.

Finally, the authors consider that a good practice would be to conduct more studies considering the opinions of the people who coordinate the use of these resources (teachers, tutors or coaches). Surely their experience could be useful for improving these tools. It is also suggested to create elements that allow us to measure the opinions of users in terms of fun and engagement with the SG.

Acknowledgements

The authors would like to acknowledge the financial and the technical support of Writing Lab, TecLabs, Tecnologico de Monterrey in the production of this work.

The authors would like to thank the financial support from Tecnologico de Monterrey through the “Challenge-Based Research Funding Program 2022”. Project ID # I005 - IFE001 - C2-T3 – T

The authors would like to acknowledge the financial and the technical support of BMS Labs, University of Twente in the production of this work.

References

El Machtani El Idrissi, W. et al. (2022) ‘The Impact of Serious Game on the Nursing Students’ Learning, Behavioral Engagement, and Motivation’, International Journal of Emerging Technologies in Learning (iJET), 17(01), pp. 18–35. Available at: https://doi.org/10.3991/ijet.v17i01.26857.

Fokides, E. et al. (2019a) 'Factors Influencing the Subjective Learning Effectiveness of Serious Games', Journal of Information Technology Education: Research, 18, pp. 437–466. Available at: https://doi.org/10.28945/4441.

Ge, R. et al. (2021) 'The Effects of Two Game Interaction Modes on Cortical Activation in Subjects of Different Ages: A Functional Near-Infrared Spectroscopy Study', IEEE Access, 9, pp. 11405–11415. Available at: https://doi.org/10.1109/ACCESS.2021.3050210.

Gijzen, M. et al. (2021) 'Feasibility of a serious game coupled with a contact-based session led by lived experience workers for depression prevention in high-school students', PLOS ONE. Edited by D.A. Mordaunt, 16(11), p. e0260224. Available at: https://doi.org/10.1371/journal.pone.0260224.

Herne, R. et al. (2022) 'Improving Engagement of Stroke Survivors Using Desktop Virtual Reality-Based Serious Games for Upper Limb Rehabilitation: A Multiple Case Study', IEEE Access, 10, pp. 46354–46371. Available at: https://doi.org/10.1109/ACCESS.2022.3169286.

Hollerit, B. et al. (2021) 'Implementation and Analytics of the Distributed Eco-Driving Simulation iCO 2', IEEE Access, 9, pp. 36252–36265. Available at: https://doi.org/10.1109/ACCESS.2021.3062325.

Janssen, A. et al. (2022) 'Experiences of Patients Undergoing Chemotherapy With Virtual Reality: Mixed Methods Feasibility Study', JMRI Serious Games, 10(1), p. e29579. Available at: https://doi.org/10.2196/29579.

Ernesto Pacheco-Velazquez et al.

Van Gaalen, A.E.J. et al. (2022) ‘Identifying Player Types to Tailor Game-Based Learning Design to Learners: Cross-sectional Survey using Q Methodology’, JMIR Serious Games, 10(2), p. e30464. Available at: https://doi.org/10.2196/30464.

Wong, J.Y.-H. et al. (2022) ‘Virtual ER, a Serious Game for Interprofessional Education to Enhance Teamwork in Medical and Nursing Undergraduates: Development and Evaluation Study’, JMIR Serious Games, 10(3), p. e35269. Available at: https://doi.org/10.2196/35269.

