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Abstract: Educational games, while widely used to enhance engagement and motivation, often struggle to balance
instructional content with compelling gameplay. Although integrating learning and gameplay within a unified structure is
theoretically effective, it presents practical challenges in achieving both high engagement and instructional impact. To
address this, the current study introduces an intertwined Multilayered Educational Game — Computer-based Framework
(iIMEG C-Framework) and an ACT-R cognitive model to simulate the recall process. These models will be evaluated across
three instructional conditions (Traditional Learning, Classic Educational Game, and iIMEG) targeting K—12 students in both
short- and long-term memory tasks. Cognitive modeling is particularly valuable in K—12 contexts where large-scale studies
are often difficult. The IMEG framework separates game mechanics, instructional content, and feedback to create a more
adaptive and organized learning experience. ACT-R modeling supports analysis of how students encode, store, and retrieve
key concepts, enabling real-time adaptive feedback and instructional refinement. A within-subjects experiment will be
conducted with 39 seventh-grade students across three counterbalanced conditions, each involving a 75-minute session on
board game design, followed by retention assessments one and seven days later. By combining experimental data with
ACT-R modeling, this study explores predictive capabilities and the impact of different game-based learning structures on
student trajectories, contributing to the design of motivation-driven learning environments in K-12 education.
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1. Introduction

Over the past two decades, game-based learning has gained recognition as a strategy to enhance motivation,
engagement, and learning outcomes in K-12 education (Boyle et al., 2016). Well-designed games can foster
deeper understanding and persistence, especially among students who struggle in traditional settings (Plass et
al., 2015). However, many still fail to produce measurable academic gains. A key issue is the blending of
entertainment and instructional goals, which can lead to cognitive overload or superficial engagement
(Parthasarathy & Mittal, 2023). This is further complicated by a disconnect between educators and designers.
Educators may lack technical skills to build interactive systems, while developers may lack pedagogical
knowledge (Roungas, 2015). As a result, many games remain ineffective or impractical for classroom use.

To be more specific about the learning processes involved in game-based learning, it is important to recognize
that understanding how games influence memory requires more than a surface-level examination of
engagement or enjoyment; it involves analysing the structural elements that shape cognitive processing
(Mayer, 2019). From educational games designed to enhance learning outcomes (Clark et al., 2016), to non-
educational games that foster incidental memory gains (Bavelier & Green, 2019), and gamified systems that
overlay game-like features onto instruction (Deterding et al., 2011), each environment engages memory
through distinct mechanisms. Research shows that memory-based educational games support vocabulary
learning and retention using techniques like visual cues, mnemonics, and pattern recognition. Evidence
includes improved recall through card games (Razali et al., 2017), long-term memory gains from digital
mnemonic tasks (Heidari et al., 2023), and vocabulary development through games like Scrabble and memory
grids (Halpern & Wai, 2007; Sivakumar, 2022). Collectively, these findings highlight the potential of such games
to strengthen encoding, retrieval, and long-term retention (Fung & Oyibo, 2024).

While these games offer strong learning potential, merging gameplay with instructional content remains
challenging. According to Self-Determination Theory, this integration can increase intrinsic motivation and
engagement (Cook & Artino, 2016), but developing unified games often demands significant time and
resources, limiting scalability (Christopoulos, 2023). Moreover, such games are typically designed for specific
subjects, restricting their broader applicability despite demonstrated effectiveness (Young et al., 2012).

Building on these insights, this study introduces an ACT-R modeling approach within the iMEG C-Framework to
examine how separating gameplay, instruction, and feedback into distinct layers affects learning. The
framework can enhance instructional clarity and cognitive efficiency, while the ACT-R model simulates
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encoding, retrieval, and decay to provide real-time insights into memory. Together, they enable dynamic
personalization and promote collaboration across education, design, and learning science.

This study addresses two central research questions:

RQ1- How does the iMEG C-Framework compare to traditional and classic game-based designs in supporting
memory encoding and retrieval?

RQ2- To what extent can the ACT-R model accurately predict learners’ memory performance across different
educational game structures?

2. Theoretical Background: ACT-R Model

ACT-R modeling (Anderson & Lebiere, 2014) forms the core theoretical framework of this study, simulating key
cognitive processes such as memory encoding, retrieval, and decision-making. Using real-time learner data, it
enables adaptive feedback and iterative refinement of instructional strategies to better match individual
learning trajectories. The model tracks how memory strength changes with repeated exposure and how
retrieval probability varies over time. Each game mechanic and its examples are represented as memory
chunks, with activation levels computed using ACT-R’s standard equations.

m =In (Z(tz—_df}) (1)
=1

where m is the memory activation, t; represents the time since the i-th encoding event, and d; denotes the
decay rate specific to each encoding. The decay rate following each encoding is modeled dynamically as a
function of prior activation, following the equation:

di=a+cxm_, (2)

where a is a baseline decay constant, ¢ is a scaling parameter controlling how decay changes with prior
memory strength, and m;; represents the activation before the j-th exposure. The probability of successful
retrieval at any testing point is modeled using a logistic retrieval function:

1
Pr=——m )
1+e s

where P, is the probability of retrieval, t is the retrieval threshold, and s is the noise parameter reflecting
individual variability in retrieval success. Currently, the model is theoretical, with no simulations or fitted
parameters. After the experiment, it will be implemented in ACT-R to calibrate based on data and assess how
different instructional conditions impact short- and long-term memory retention, as well as how the model can
capture these effects.

3. Experiment Design

All instructional content and game-based materials in this study were developed using Articulate Storyline
(version 3.20) to ensure consistency and interactivity across conditions. Each learning condition—Traditional,
Classic Educational Game, and iIMEG—was implemented as a standalone module. The study includes 39
seventh-grade students (balanced by gender) from private middle schools, randomly assigned to one of the
three conditions using a between-subjects design. The experiment consists of three main phases: a pretest
phase, a learning (encoding) phase, and a posttest (retrieval) phase. In the pretest phase, all participants
complete a 15-item multiple-choice test to assess prior knowledge of board game mechanics. In the learning
phase, each group receives a different instructional intervention based on their assigned condition. Finally, in
the retrieval phase, participants complete two post-tests: one 15-item test administered 24 hours after the
learning session to measure short-term retention, and another identical test given seven days later to assess
long-term memory. This design enables comparisons of learning effectiveness across instructional formats and
time intervals.

3.1 Traditional Condition Design

In the traditional learning condition, participants begin with an initial study phase (Exposure 1) by reviewing
slides that define ten game mechanics, each paired with three illustrated examples, spending one minute per
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slide to support encoding. In the second phase (Exposure 2), they complete a 15-item multiple-choice quiz
within 10 minutes, receiving 10-second corrective feedback for incorrect answers and retaining access to
definitions throughout. This is followed by two more sets of 8 multiple-choice questions (3 minutes each),
during which no definitions are available, encouraging retrieval practice without support. After each quiz,
unresolved questions and correct answers are shown for feedback.

Learning : All 00:09/01:00 &

Set Collection

The value of items depends on their inclusion in a set, such as
earning points for collecting a specific quantity or variety. For
example, a set of three identical items may be worth points,
whereas individual items have no value on their own.

« O ¢prev | [ NEXTY

Figure 1: Sample image from Exposure 1, used across all three conditions
3.2 Classic Educational Game Condition Design

In the classic educational game condition, participants begin with the same initial study phase (Exposure 1) as
in the traditional condition, reviewing slides on ten game mechanics and examples for one minute each. In
Exposure 2, they complete three rounds of a memory-based matching game. The first round (Blitz Race) is a
10-minute 5x6 Match Pairs game with access to definitions and examples (Figure 2, left) with retaining access
to definitions throughout. The second and third rounds (Bullet Races) use a 4x4 grid with 3-minute limits and
no access to definitions, promoting retrieval-based learning. After each round, unresolved pairs and correct
answers are shown for feedback.

3.3 iMEG Condition Design

In the IMEG condition, participants begin with the same initial study phase (Exposure 1) as the other groups,
reviewing slides on ten board game mechanics with three examples each, spending one minute per slide. In
the second phase (Exposure 2), participants will engage in three rounds of memory-based matching games,
like the classic design (Section 3.2), but using a neutral theme, matching animals to their corresponding foods,
instead of board game mechanics (Figure 2, right). At the start of each round, participants will be given three
initial attempt opportunities to match pairs. To earn additional attempt opportunities, two for each correct
answer, participants must answer a multiple-choice question (timer will pause during responding) similar to
those used in the traditional condition. If a participant answers incorrectly, the correct answer will be
displayed for five seconds before they return to the matching task. This structure is designed to separate the
gameplay experience from the instructional content.
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Group-2: C-Game 02:37/10:00 & Group-3: iIMEG 00:58/03:00 &
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Figure 2: Blitz section of Classic Game Design (left) and Bullet section of iMEG Framework Design (Right)
3.4 Mapping Experimental Design to ACT-R Model

To bridge the experimental design with computational modeling, Figure 3 presents the conceptual flow of the
ACT-R based memory model underlying this study. The diagram maps how participants move from initial study
exposure to multiple phases of practice, with corresponding updates in memory activation after each learning
event. Following the learning phases, memory decay is applied over one- and seven-day intervals to simulate
the natural forgetting process, and retrieval probability is predicted based on the resulting activation values.
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Figure 3: Conceptual flow of the ACT-R memory model showing exposure, activation updates, decay over
time, and retrieval prediction

4. Conclusion

This study introduces a novel approach to understanding memory processes in educational game
environments by integrating the ACT-R cognitive architecture with the iMEG C-Framework. By structurally
separating gameplay, instruction, and feedback, the iMEG framework aims to reduce cognitive load and
promote more effective memory encoding and retrieval. The use of ACT-R modeling enables simulation and
prediction of learners’ cognitive performance, offering a foundation for adaptive learning design. Together,
these contributions represent a step toward more theoretically grounded and scalable educational game
development for K-12 learners.

5. Future Work and Limitations

While the proposed framework and model are promising, this study remains in the implementation and
validation phase. No formal simulation results are currently available, and model parameters have not yet
been empirically calibrated. Future work will involve analyzing the experimental data from the three
instructional conditions to fit and validate the ACT-R model. Additionally, the generalizability of findings is
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limited by the specific subject matter and grade level (seventh-grade students). Expanding the framework to
different content areas and learner populations, as well as exploring affective and motivational variables
through extended modeling, are important directions for future research.

Ethics Declaration: This study involved the design and evaluation of instructional materials for seventh-grade
students using de-identified, anonymized procedures and did not collect any personal or sensitive data. As
such, formal ethical clearance was not required. The research was conducted in accordance with institutional
guidelines for educational research with minors.

Al Declaration: During the preparation of this manuscript, the authors used GPT-4 for grammar and clarity
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content, analysis, and interpretations were developed by the authors, who take full responsibility for the final
work.

References

Anderson, J.R. and Lebiere, C.J., 2014. The atomic components of thought. New York: Psychology Press.

Bavelier, D. and Green, C.S., 2019. “Enhancing attentional control: Lessons from action video games”. Neuron, 104(1),
pp.147-163.

Boyle, E.A., Hainey, T., Connolly, T.M., Gray, G., Earp, J., Ott, M. and Pereira, J., 2016. “An update to the systematic
literature review of empirical evidence of the impacts and outcomes of computer games and serious games”.
Computers & Education, 94, pp.178-192.

Christopoulos, A. and Mystakidis, S., 2023. Gamification in education. Encyclopedia, 3(4), pp.1223-1243.

Clark, D.B., Tanner-Smith, E.E. and Killingsworth, S.S., 2016. “Digital games, design, and learning: A systematic review and
meta-analysis”. Review of Educational Research, 86(1), pp.79-122.

Cook, D.A. and Artino, A.R., 2016. Motivation to learn: An overview of contemporary theories. Medical Education, 50(10),
pp.997-1014.

Deterding, S., Dixon, D., Khaled, R. and Nacke, L., 2011. “From game design elements to gamefulness: Defining
'gamification". In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media
Environments. Tampere, Finland: ACM, pp.9—15.

Fung, K. and Oyibo, K., 2024. “Examining the effectiveness of mnemonics serious games in enhancing memory and
learning: A scoping review”. Applied Sciences, 14(23), p.11379.

Halpern, D.F. and Wai, J., 2007. “The world of competitive Scrabble: Novice and expert differences in visuospatial and
verbal abilities”. Journal of Experimental Psychology: Applied, 13(2), pp.79-94.

Heidari, Z., Tabatabaee Lotfi, S.A. and Sarkeshikian, A., 2023. “The effect of mnemonic technique and digital game-based
task on teaching vocabulary to Iranian EFL students through distance education”. Quarterly of Iranian Distance
Education Journal, 5(1), pp.85-99.

Mayer, R.E., 2019. “Computer games in education”. Annual Review of Psychology, 70(1), pp.531-549.

Parthasarathy, P.K., Mittal, A. and Aggarwal, A., 2023. “Literature review: Learning through game-based technology
enhances cognitive skills”. International Journal of Professional Business Review, 8(4), p.29.

Plass, J.L., Homer, B.D. and Kinzer, C.K., 2015. “Foundations of game-based learning”. Educational Psychologist, 50(4),
pp.258-283.

Razali, W.N., Amin, M.N., Kudus, N.V. and Musa, M.K., 2017. “Using card game to improve vocabulary retention: A
preliminary study”. International Academic Research Journal of Social Science, 3(1), pp.30-36.

Roungas, B. and Dalpiaz, F., 2015. “A model-driven framework for educational game design”. In: International Conference
on Games and Learning Alliance. Cham: Springer, pp.1-11.

Sivakumar, R., 2022. “Effectiveness of memory game on academic performance of primary school students”. Global and
Lokal Distance Education — GLOKALde, 8(1), pp.15-23.

Young, M.F., Slota, S., Cutter, A.B., Jalette, G., Mullin, G., Lai, B. and Yukhymenko, M., 2012. “Our princess is in another
castle: A review of trends in serious gaming for education”. Review of Educational Research, 82(1), pp.61-89.

1083
The Proceedings of the 19th European Conference on Games Based Learning



	ZZ-Farzan 099
	1. Introduction
	2. Theoretical Background: ACT-R Model
	3. Experiment Design
	3.1 Traditional Condition Design
	3.2 Classic Educational Game Condition Design
	3.3 iMEG Condition Design
	3.4 Mapping Experimental Design to ACT-R Model

	4. Conclusion
	5. Future Work and Limitations
	References




