Enhancing Learning Through VR Game Design in Higher Education

Cristina Gonzalez and Claudia Solis

Tecnologico de Monterrey, Mexico

<u>cristina.gonzalez.cordova@tec.mx</u> clausolis@tec.mx

Abstract: This study examines the integration of Virtual Reality (VR) as a development platform within a university-level Software Construction course, specifically in a video game design module for Computer Science students. Traditionally centered around 2D game development, the course introduced a VR-based project to modernize the learning experience and increase student motivation. Students were paired based on similar academic performance and provided with Meta Quest headsets. Each team was assigned a random thematic prompt—such as magic, city, forest, retro, or miniature world—and tasked with creating a fully interactive 3D environment in Unity. Within this space, they developed a mini game featuring essential mechanics, including objectives, rules, timers, and win/loss conditions. The activity emphasized both creative design and technical implementation within an immersive gameplay context. In addition to its immersive qualities, the activity incorporated gamification strategies, including random challenge constraints, milestone-based progression, peer feedback, and a final showcase that simulated real-world presentation scenarios. These elements were designed to enhance motivation and engagement through a structured, game-like learning journey. The primary aim of this pedagogical intervention was to assess whether the interactive and immersive nature of VR, augmented by gamified instructional design, could enhance student engagement, motivation, and the perceived relevance of course content. A post-activity survey gathered students' perceptions, focusing on engagement levels and the comparative educational value of the platform relative to traditional ones. Findings reveal that students considered the VR activity significantly more engaging and professionally relevant. They reported increased motivation, greater satisfaction with the creative process, and a stronger connection to real-world software development practices. These outcomes suggest that integrating virtual reality (VR) and gamification can promote deeper involvement and a more meaningful learning experience in software engineering education. In this undergraduate-level course, the baseline requirement is to develop a video game and briefly explore the topic of haptics in gaming. Nevertheless, this VR-based activity offers students an added value by enabling them to fully design and implement a video game deployed on the Meta Quest platform. The technical knowledge and practical experience gained through this process go beyond the standard curriculum and are exclusive to the groups that engage in the VR implementation. This not only deepens their understanding of immersive technologies but also equips them with skills rarely acquired at this stage of their academic training. However, it is important to recognize that the study relies mainly on self-reported data. While such perceptions provide valuable insight, they are inherently subjective and may reflect novelty effects or social desirability bias. Future research should incorporate additional data sources such as more performance metrics, code quality analysis, or instructor evaluations to assess actual learning and skill acquisition. Additionally, learning in this context is understood as the development of both technical competencies – such as Unity programming and VR interaction design - and transversal skills including teamwork, adaptability, and creative problemsolving. These skills, while difficult to quantify, are essential for software development careers. This paper details the instructional design, implementation strategies, technical considerations, and student feedback associated with the activity. While the results offer compelling evidence for the value of VR and gamification, it is equally critical to consider challenges and limitations, including technical accessibility, student discomfort, and the risk of overestimating the pedagogical value of immersive novelty. Moreover, critiques of gamification as a concept – such as those by Fuchs (2014) and Bogost (2011), who question its alignment with neoliberal educational logics – remind us of the importance of applying such strategies thoughtfully, ensuring that they support rather than trivialize the learning experience.

Keywords: Virtual reality, Gamification, Student engagement, Computer science education, Educational innovation, Higher education

1. Introduction

Immersive technologies, particularly Virtual Reality (VR), are transforming the landscape of digital interaction and are beginning to shape pedagogical approaches in higher education. As a channel capable of fostering presence, immersion, and interactivity, VR has demonstrated significant potential in promoting experiential and student-centered learning (Freina and Ott, 2015; Radianti et al., 2020). However, it is important to consider the limitations of this technology, including issues of accessibility, physical discomfort, and uneven student engagement, as well as the possibility that novelty may temporarily inflate perceptions of effectiveness.

In the context of computer science education, VR is increasingly being adopted to simulate realistic development environments, offer dynamic user experiences, and facilitate the acquisition of complex technical skills in engaging and meaningful ways. Despite its growing commercial availability and usability, the integration of VR into core academic curricula remains relatively limited. Most university-level software development courses continue to rely on conventional platforms and tools that, while foundational, may not

fully align with the current technological landscape or the demands of the software industry. Traditional instructional approaches often focus on 2D application or game development environments, which can constrain the creative possibilities and immersive potential of student projects. Furthermore, such tools may fall short in sustaining learner motivation and in cultivating the diverse skill sets required for the development of modern interactive systems.

The Software Construction and Decision-Making course serves as a cornerstone within undergraduate computer science programmes, providing foundational training in areas such as web development, database management, and video game creation. However, while these topics are essential, the course's approach to game development typically emphasizes 2D projects. While these offer value in terms of logic, structure, and coding practice, they may not adequately prepare students for contemporary development environments that increasingly rely on 3D engines, real-time rendering, and immersive interactivity. There is thus an opportunity to explore how emerging technologies—specifically virtual reality (VR)—can be strategically integrated into this course to enrich the learning experience, stimulate student engagement, and more authentically reflect industry practices.

This study introduces a VR-based pedagogical intervention within the Software Construction and Decision-Making course to examine its impact on student engagement, motivation, and the perceived relevance of course content.

In this activity, the technique of peer programming (Williams and Kessler, 2002) was employed by pairing students with similar academic performance. This strategic pairing allowed both members to collaborate more effectively, as they felt equally capable and supported. Working in pairs helped reduce the anxiety typically associated with learning and applying new technologies, such as virtual reality, fostering a more confident and balanced environment for exploration and problem-solving.

The intervention also required students using VR headsets to design interactive 3D environments and implement themed mini-games in Unity. This cross-platform game engine enables developers to create interactive 2D and 3D content, widely used for game development, simulations, and immersive experiences (Unity Technologies, 2023).

Each pair was assigned a random creative prompt (e.g., magic, city, retro), challenging them to balance technical implementation, imaginative storytelling, and user experience within the constraints of an immersive development framework. The project aimed to bridge theoretical learning with applied software construction practices, offering a holistic approach to skill development.

By analysing post-activity student feedback, the study assesses not only how students perceive the educational value of VR in comparison with traditional tools but also how immersive development influences their motivation and perceived alignment with real-world software engineering workflows. These findings contribute to the broader discourse on immersive learning environments in computer science education, offering empirical evidence that supports VR as a viable instructional platform. At the same time, we acknowledge the need to interpret such data with caution and to pursue further research using triangulated methods to verify learning outcomes and address potential limitations in accessibility and effectiveness. Ultimately, the research underscores the potential of VR to serve as both a content delivery medium and a development context that reinforces software engineering concepts, stimulates creativity, and enhances student engagement in technical disciplines.

2. Methodology

2.1 Course Context and Participants

This study was conducted as part of the Software Construction and Decision-Making course in the undergraduate Computer Science curriculum. Most students take it in their fourth semester and study fundamental topics like web development, database administration, and video game design. It also teaches software engineering principles and collaborative development practices.

The study involved 28 students in 14 pairs. To ensure equity in collaboration and reduce variance due to prior academic performance, participants were paired based on their cumulative Grade Point Average (GPA). Stratified pairings were used to distribute technical skills fairly and encourage fair teamwork across teams.

2.2 Intervention Design

An alternative to the 2D game development module was presented to explore the possibilities of applying immersive technologies to software development education. This intervention involved students applying technical knowledge in an emerging domain of real-time 3D interactive systems.

Each student team received a Meta Quest headset. In the Meta Quest series, developed by Meta, standalone VR headsets can execute virtual experiences without the need for external computing devices (Meta, 2023). These devices are designed with portability, ease of use, and compatibility in mind, catering to the most popular development platforms.

Figure 1: Meta Quest 3 mixed reality headset featuring controllers and spatial awareness capabilities

The primary development environment was chosen because Unity supports VR integration via the XR Interaction Toolkit. This platform enables cross-platform development, rapid prototyping, and real-time deployment to VR headsets, allowing students to iterate between development and testing. The asset pipeline and documentation of Unity also made it a very accessible but powerful tool for undergraduate implementation.

Randomly assigned game development themes stimulated creative thinking and thematic diversity. Themes included futuristic, retro, magic, forest, city, miniature worlds, beach, and space. Those creative constraints framed narrative design and aesthetic choices, while allowing students considerable latitude to interpret this material in the immersive format.

2.3 Implementation and Development Process

This intervention lasted two weeks and was implemented in the second half of the semester, following instructional modules on 2D game design, object-oriented programming, and agile workflows. The timing was deliberate, allowing students to possess the fundamentals necessary for transitioning into virtual reality development.

2.3.1 Two-Week In-Class and independent work plan

During these two weeks, students worked on their VR video game projects following a blended schedule. Some sessions were conducted in class, focusing on collaborative tasks, feedback, and technical support, while other sessions were completed independently, allowing students to make progress at their own pace. This approach provided flexibility, encouraged responsibility, and enabled students to manage better the challenges of developing with new technologies.

This was the blended schedule for the first week of the assignment:

- Week 1. In-Class Session: Implementation began with a technical onboarding session that taught students the key concepts of virtual reality (VR) development. That meant learning about Unity's XR interaction Toolkit, headset setup, spatial Interaction paradigms, and VR-specific UI elements in a hands-on workshop. Students learned locomotion (teleportation and smooth movement), object interaction (grabbing and throwing), and environmental issues such as scale, comfort, and accessibility.
- Week 1. Independent Work: To enable couples to work independently during the first week, students
 received asynchronous learning materials, including video tutorials, curated documentation, and

sample Unity projects that demonstrate best practices in immersive development. These resources facilitated the continuation of learning and self-paced exploration.

For version control and collaborative development, each team was assigned a private Git repository. Teams were encouraged to simulate game behaviour within the Unity Editor and to deploy builds regularly for testing on the Meta Quest headset. This approach enabled the iterative fine-tuning of game mechanics, player experience, and interface design.

To guide the structure of their games, all teams were required to implement the following core gameplay features:

- Clearly defined objectives and rule sets
- Real-time feedback mechanisms (e.g., score counters, timers)
- Win and loss conditions
- VR-appropriate navigation and interaction techniques

Such criteria should have guaranteed pedagogical consistency while allowing for variation in technical ambition and creative vision.

The blended schedule for the second week of the assignment was as follows:

- Week 2. In-Class Session: At the beginning of the second week, a checkpoint was established to track
 progress and adherence to project goals. In this session, instructors provided formative feedback,
 addressed technical issues, and conducted mini-peer review sessions. The latter involved teams
 presenting playable prototypes and classmates providing feedback, thereby creating a community of
 practice that reflected real software development environments.
- Week 2. Independent Work: The teams refined details and made modifications based on the feedback received after presenting their progress.

The intervention concluded with a showcase, during which all teams presented their completed virtual reality (VR) games. Students pitched their project to peers and instructors, followed by live playthroughs with the VR headsets. This event had two purposes: it was both an informal summative assessment of students' technical and creative achievements and a celebration of their immersive learning.

To further illustrate the outcomes of the final design challenge, the following images showcase a selection of student-developed virtual reality (VR) games. These screenshots highlight the diversity of creative approaches, technical implementations, and thematic interpretations that emerged during the project. Each game reflects a unique combination of narrative design, user interaction, and immersive world-building, demonstrating students' ability to apply core software engineering principles in a novel and engaging medium. The visuals not only exemplify the level of innovation and polish achieved but also underscore the pedagogical potential of open-ended, project-based learning in virtual reality environments.



Figure 2: Screenshots of student-developed virtual reality games

2.4 Immersive and Gamification Learning

Although the VR intervention focused primarily on novel and immersive development, this activity is also part of a gamified course. Gamification refers to the application of game-design elements in non-game contexts to increase engagement, motivation, and learning outcomes (Deterding et al., 2011). Each pair of students had the opportunity to implement extra functionalities to earn "diamonds," the virtual currency used throughout the gamified course.

Having the optional possibility of developing additional functionality validated and approved by the teacher to obtain "diamonds" within the gamified environment, without affecting the grade within the final mark, generates a greater sense of autonomy and feedback, elements that the literature on gamification identifies as key to immersive interaction (Hamari, Koivisto, and Sarsa, 2014). The combination of immersive interaction with a gamified experience component thus allowed for a two-layered interaction strategy: one cognitive and the other experiential.

However, we also recognize that gamification as a pedagogical strategy is not without critique. Scholars such as Fuchs (2014) and Bogost (2011) have questioned whether gamification risks reducing complex educational goals to simplified reward systems or reinforcing neoliberal ideologies that emphasize productivity and control. In our implementation, we tried to avoid these dilemmas by framing game elements as voluntary, creative extensions that encouraged intrinsic motivation rather than compliance.

The VR format further amplified these effects by offering a heightened sense of presence, agency, and feedback—elements that gamification literature identifies as key to immersive engagement (Hamari, Koivisto, and Sarsa, 2014). The combination of immersive interaction with a gamified structure thus enabled a dual-layered engagement strategy: one cognitive and one experiential.

Embedding gamification within VR-based learning extends beyond mere novelty, functioning instead as a pedagogical catalyst for sustained motivation and meaningful learning. Nonetheless, thoughtful and critical application is essential to ensure that gamification strategies enhance rather than trivialize the learning experience. These findings support the increasing alignment between gamification theory and emerging educational technologies.

3. Discussion

The success of the final design challenge highlights several key insights regarding how undergraduate software engineering students respond to open-ended, creative, and collaborative learning environments. Most notably, the high levels of engagement, autonomy, and technical rigor demonstrated in the final prototypes suggest that students can thrive when given freedom to explore their ideas while still being guided by well-defined constraints and checkpoints. Although the quantitative data presented reflects mainly students' perceived levels of engagement, as shown in Figure 6, the actual execution of the activity led to the natural development of technical skills in an additional and innovative topic for this course. Through the process of designing, developing, and deploying VR-based video games on the Meta Quest platform, students were exposed to real-world immersive technologies that are not typically covered in standard course sections. This outcome provides tangible curricular enrichment beyond what is captured through self-reported perceptions.

While the previous paragraph highlights that the findings are primarily based on self-reported perceptions, it is also important to recognize that each student pair successfully designed and developed a fully functional VR game. These tangible and deployable products provide concrete evidence of technical achievement and creative engagement. Still, we urge caution in interpreting these responses as direct evidence of learning gains, as further evaluation would be needed to objectively assess the depth and retention of the acquired skills.

3.1 Balancing Structure and Creativity

A critical balance between structure and freedom is central to the success of this activity. The imposed thematic constraint—designing inclusive IoT solutions for underrepresented groups—gave students a focused problem space, which prevented idea overload and encouraged empathy-driven innovation. Simultaneously, allowing students to choose their user group and technical approach promoted autonomy, which has been shown to correlate with higher motivation and learning outcomes in constructivist learning environments (Ryan and Deci, 2000).

The incorporation of weekly deliverables, including the ideation canvas, midterm prototype, and final presentation, created a rhythm and accountability throughout the project. These progressive checkpoints provided students with the opportunity to refine their designs iteratively, receive meaningful feedback, and integrate new knowledge, whether technical, design-related, or user-centered, into their solutions.

The final showcase functioned as a motivational anchor, yet future iterations should consider integrating more robust assessments to evaluate students' actual skill development. These may include rubrics for technical quality, instructor evaluations, or peer code reviews.

3.2 Pedagogical Implications of Gamification

Although the course did not adopt a fully gamified structure, several embedded elements intentionally paralleled game dynamics to promote engagement and motivation. The design challenge was framed with mechanics akin to those found in game-based learning environments:

- A thematic constraint functioned like a narrative quest, encouraging students to design within specific moral and social boundaries.
- Progressive milestones, such as the canvas, prototype, and final presentation, mirrored the structure of game levels, providing regular feedback and escalating challenges to maintain momentum.
- The final showcase functioned as a culminating "boss battle," where students presented their work
 publicly and received feedback from peers and instructors, fostering a sense of closure and
 recognition.

These elements were informed by Self-Determination Theory (Deci and Ryan, 2000), which emphasizes autonomy, competence, and relatedness as foundational to intrinsic motivation. Still, critical perspectives on gamification – such as Fuchs (2014), who argues it can reinforce managerial control, and Bogost (2011), who critiques it as exploitative – highlight the importance of applying game elements in ways that genuinely empower students rather than manipulate behavior.

In our course design, we aimed to avoid shallow reward systems by focusing on voluntary, creative extensions and meaningful feedback. Nevertheless, further research is needed to explore whether students interpret these elements as playful or performative – and hot that perception influences learning outcomes.

3.3 Data Collection

The pedagogical impact of the VR-based intervention was evaluated through a structured post-activity survey administered to all 28 students. This survey captured students' perceptions across three dimensions: Engagement, motivation, and perceived relevance to academic and professional preparation. However, the lack of a more robust evaluation and assessment methods limits our ability to substantiate the efficacy of the intervention in terms of actual individual skill acquisition.

Moving forward, we recommend a mixed-methods approach that combines self-reports with direct measures of code quality, participation logs, and perhaps even biometric or behavioral engagement data to provide a more comprehensive understanding.

3.4 Data Analysis

Quantitative responses were analysed using descriptive statistics to identify trends in engagement, motivation, and perceived educational value. Open-ended responses were examined through thematic analysis to extract recurring themes related to student experiences, perceived challenges, and reflections on learning outcomes. The mixed-methods approach was selected to ensure a comprehensive understanding of the intervention's impact (Creswell & Plano Clark, 2011).

4. Results

A total of 20 students participated in the post-activity survey, which assessed their experience with the Virtual Reality (VR) based game development project. The survey included five Likert-scale questions and two openended questions to gather both quantitative and qualitative insights regarding motivation, engagement, technical challenges, and perceived learning outcomes.

4.1 Quantitative Findings

Students responded positively overall to the VR activity, with strong agreement on increased motivation, engagement, effort, and enjoyment compared to traditional software development projects.

• Motivation and Interest: For the statement "During the VR development activity, I felt more motivated than during other software development activities", 75% of students rated 4 or 5, indicating elevated motivation. Similarly, 75% rated 4 or 5 for "The experience of working in Virtual Reality increased my interest in learning new technologies."

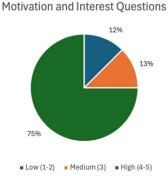


Figure 3: Results of questions related to motivation and interest

• Engagement and Effort: Responses to "I felt more engaged with the project because of the immersive nature of Virtual Reality" were predominantly positive, with 75% of students rating 4 or 5. Likewise, 75% agreed or strongly agreed that their level of effort was higher than usual in this VR activity.

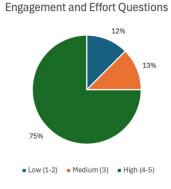


Figure 4: Results of questions related to engagement and effort

• Enjoyment: The statement "Developing a video game in VR was more fun than developing on traditional platforms" received somewhat more varied responses, yet 75% still rated it favorably (4 or 5). A small minority expressed lower satisfaction.

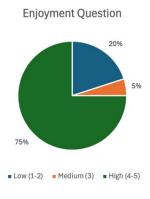


Figure 5: Results of the question related to enjoyment

Grade distribution: All 14 student pairs successfully completed the activity and deployed their
projects to the Meta Quest headsets. Each team achieved a final grade above 90 out of 100,
demonstrating a high level of engagement and mastery of the required skills. A graph illustrating the
grade distribution is included to provide a visual representation of the consistently strong
performance across all teams.

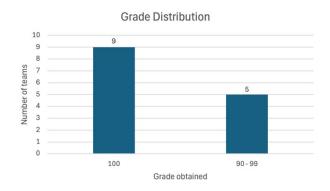


Figure 6: Grade distribution for each one of the 14 student pairs

These results highlight the overall success of the activity and confirm that every student was able to meet the objectives and deliver a functional deployment. They also demonstrate that the immersive VR environment, combined with gamified instructional elements, effectively increased students' motivation, engagement, and enjoyment in the software development process.

4.2 Qualitative Findings

Open-ended responses provided rich insights into students' experiences and the educational value of the VR activity.

Overall Experience: Students described the VR development as fun, exciting, and enriching, particularly appreciating the immersive interaction with their creations. Many noted the novelty of working with VR technology, which is seldom integrated into their curriculum. However, technical challenges were frequently mentioned, including difficulties with headset setup, limited access time, hardware compatibility issues, and the complexity of Unity's 3D environment. A minority felt the activity was rushed or experienced physical discomfort, such as motion sickness. (Fig. 6)

Figure 7: Word Cloud of the overall experience of students

- Learning Outcomes Relevant to Future Development Careers: Analysis of the second open-ended question revealed four main themes:
- Technical Skills and Challenges: Students learned to navigate the complexities of 3D VR development, including Unity 3D and Meta Quest controls, and gained awareness of the importance of compatibility testing.
- Problem-Solving and Adaptability: The activity highlighted the need for methodical debugging, patience, and flexibility when working with new technologies.
- Teamwork and Collaboration: Collaborative problem-solving and mutual support were seen as critical for successfully navigating the challenges of VR projects.

- Personal Reflection and Attitude: While many found the experience rewarding, some expressed frustration or hesitation about similar future projects, reflecting diverse attitudes toward emerging technologies.
- Overall, the VR-based project not only enhanced technical competencies but also fostered critical soft skills, such as adaptability, collaboration, and resilience, that are essential for professional growth in software development.

5. Conclusions

The implementation of this two-week VR video game development activity, using the peer programming technique, proved to be an effective strategy for guiding students through the creation of a novel and entertaining VR video game product.

Working collaboratively allowed them to tackle the technological challenges of virtual reality with greater confidence, while continuous guidance and feedback from the professor ensured that learning goals were met. The peer programming dynamic encouraged shared problem-solving and more profound understanding, which were crucial for engaging with such an advanced and demanding technology.

Moreover, by integrating this project into the course's overarching gamified experience, students were further motivated to go beyond the basic requirements. The opportunity to earn "diamonds" for adding extra functionality not only sparked creativity and initiative but also reinforced their sense of progression within the course.

Nonetheless, the reliance on student perceptions as the main evaluative metric limits the ability to draw definitive conclusions about learning. Additionally, the VR format may not be equally accessible or effective for all learners.

We recommend future studies incorporate triangulated assessments, longitudinal tracking, and engagement with critical scholarship to ensure that immersive and gamified educational experiences fulfill their pedagogical potential without becoming tools of superficial engagement or technocentric hype.

This alignment between cutting-edge tools and playful learning design significantly enriched the students' educational journey, making the use of relevant and current technology both meaningful and enjoyable.

Acknowledgements

The authors would like to acknowledge the financial support provided by Tecnologico de Monterrey's Writing Lab and the Institute for the Future of Education in the creation of this work.

Ethics Declaration: Formal ethical clearance was not required for this study. Students were invited to complete an open survey voluntarily, and it was clearly stated that their responses could be used for research purposes. Participation was entirely optional, and no identifiable personal data was collected.

Al Declaration: Grammarly, an Al-powered writing assistant, was used during the preparation of this paper. The tool supported the revision process by identifying grammar, spelling, and punctuation issues and suggesting improvements for clarity and conciseness. All suggestions provided by the tool were carefully reviewed and selectively applied by the author to maintain the intended meaning and academic tone of the paper.

References

Bogost, I. (2011). Gamification is bullshit. In: The Atlantic. Available at:
https://www.theatlantic.com/technology/archive/2011/08/gamification-is-bullshit/243338/ (Accessed: 13 May 2025).

Creswell, J.W. and Plano Clark, V.L., 2011. *Designing and conducting mixed methods research*. 2nd ed. Thousand Oaks, CA: SAGE Publications.

Deci, E.L. and Ryan, R.M. (2000). *The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior*. Psychological Inquiry, 11(4), pp.227–268. https://doi.org/10.1207/S15327965PLI1104 01

Freina, L. and Ott, M., 2015. A literature review on immersive virtual reality in education: state of the art and perspectives. In: The International Scientific Conference eLearning and Software for Education. Bucharest, Romania, pp.133-141.

Fuchs, M. (2014). Gamification as twenty-first-century ideology. In: Journal of Gaming & Virtual Worlds, 6(2), pp.143–157. https://doi.org/10.1386/jgvw.6.2.143_1

- Hamari, J., Koivisto, J. and Sarsa, H., 2014. Does gamification work? A literature review of empirical studies on gamification. In: 47th Hawaii International Conference on System Sciences. IEEE, pp.3025–3034. https://doi.org/10.1109/HICSS.2014.377
- Meta (2023) *Meta Quest: All-in-One VR Headsets*. Available at: https://www.meta.com/quest/ (Accessed: 13 May 2025). Radianti, J., Majchrzak, T.A., Fromm, J. and Wohlgenannt, I., 2020. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda—Computers & Education, 147, p.103778.
- Ryan, R.M. and Deci, E.L. (2000). *Intrinsic and extrinsic motivations: Classic definitions and new directions*. Contemporary Educational Psychology, 25(1), pp.54–67. https://doi.org/10.1006/ceps.1999.1020
- Unity Technologies (2023). What is Unity?. Available at: https://unity.com/what-is-unity (Accessed: 13 May 2025). Williams, L. and Kessler, R., 2002. Pair Programming Illuminated. Boston: Addison-Wesley.