Game Over (GO!): A Transformative Model for Entrepreneurship Education through Game-Based Experiential Learning

Lina Margarita Marrugo-Salas

School of Business, Law and Society, Cartagena de Indias, Colombia

Imarrugo@utb.edu.co

Abstract: This study explores Game Over (GO!), an innovative educational model that integrates gamification, experiential learning, and interdisciplinary collaboration to enhance entrepreneurship education. GO! transforms classrooms into dynamic innovation labs where students design and prototype physical games to solve real-world challenges, aligning with the Sustainable Development Goals (SDGs). Adopting a mixed-methods approach, the research analyzed data from five editions of GO!, involving 652 students who developed 117 game prototypes. Quantitative data include prototype evaluations and participant surveys, while qualitative insights were obtained through interviews with judges and participant observation. Results show that 80% of the prototypes aligned with the SDGs, and 80% of teams refined their designs multiple times following feedback from users and early adopters. Judges highlighted the initiative's creativity, depth, and real-world impact. This study demonstrates that gamification, beyond being a teaching tool, is a catalyst for developing critical thinking, creativity, and collaborative skills. The findings offer a scalable model for integrating game-based learning in entrepreneurship education across diverse contexts.

Keywords: Gamification, Experiential learning, Entrepreneurship education, Innovation, Sustainable development goals (SDGs)

1. Introduction

Entrepreneurship education (EE) has evolved significantly, shifting from traditional theoretical approaches to more dynamic, experiential methods. Within this context, gamification and experiential learning have emerged as powerful pedagogical strategies for fostering creativity, critical thinking, and entrepreneurial competencies. These methods engage students in active problem-solving, allowing them to acquire knowledge through handson experiences rather than passive instruction.

Game Over (GO!) is an educational model designed to leverage these principles by transforming university classrooms into interactive innovation labs. Through GO!, students become "corporate detectives" tasked with designing physical games that address real-world challenges. This approach not only enhances student engagement but also bridges the gap between theoretical knowledge and practical application, aligning with the Sustainable Development Goals (SDGs).

The model is implemented within the Creativity and Entrepreneurship courses at Universidad Tecnológica de Bolívar (UTB). Students work in interdisciplinary teams, engaging in a phased design process that includes empathy, ideation, prototyping, and validation. These prototypes are then tested in real-world contexts, with students receiving feedback from industry stakeholders and expert judges.

This study aims to explore the impact of the GO! model on student learning outcomes and its potential as a scalable approach to entrepreneurship education. Specifically, it addresses the following research questions:

- RQ1. How does game-based experiential learning impact students' entrepreneurial skills and competencies?
- RQ2. To what extent do student-designed games align with real-world challenges and SDGs?
- RQ3. What are the perceptions of external judges and stakeholders regarding the quality and impact of the student-created prototypes?

To answer these questions, a mixed-methods approach was adopted. The findings contribute to the growing body of knowledge on Game-Based Learning (GBL), offering a scalable and adaptable model for entrepreneurship education.

2. Literature

2.1 Game-Based Learning

Overview of Global Trends

A search for the term 'game-based learning' in high-impact databases such as Scopus reveals a consistent increase in publications on the topic since the early 2000s. The most significant growth has occurred in the

second decade of the 21st century, during which the number of studies more than doubled. For example, in 2024 alone, nearly 1,000 publications were recorded. As of early May 2025, a total of 8,780 documents were indexed under this keyword. These can be categorised by disciplinary area as follows: computer science (34%), reflecting the rise of digital games, followed by social sciences (30%) and engineering (13%). Other fields appear in smaller proportions (under 3%), including mathematics, psychology, medicine, arts and humanities, decision sciences, business, and others. This distribution underscores the interdisciplinary and cross-sector applicability of game-based learning. The top 10 countries by institutional affiliation contributing to this body of literature are: United States, Taiwan, United Kingdom, Germany, Spain, Malaysia, China, Greece, Indonesia, and Canada. As expected, only one Spanish-speaking country appears in this list. The most prolific authors in the field, their work serves as a foundational reference in game-based learning research:

James Lester's work has been foundational in demonstrating the affective and cognitive dimensions of GBL environments. Lester and colleagues have shown that emotional states such as curiosity and flow positively correlate with deeper engagement and learning outcomes, while negative states like boredom and frustration impede learning (Sabourin & Lester, 2014). His research underscores the importance of affective engagement as a critical design consideration for serious games.

Hueitse Hou has contributed extensively to the development of both digital and analogue educational games, with a particular emphasis on mobile technologies and augmented reality. His most cited studies illustrate how immersive systems can foster greater involvement and motivation among learners (Chang et al., 2014). His dual focus on technological innovation and intrinsic motivation has made a substantial impact on the use of educational board games and simulation-based environments in formal education settings (Hou & Keng, 2021; Hou, 2012).

Kristian Kiili has been instrumental in conceptualising the experiential nature of learning through digital games. His seminal work (Kiili, 2005) demonstrates that well-designed online games can serve as effective learning environments by meeting key pedagogical criteria such as challenge, feedback, and control. Kiili has also developed design principles aimed at fostering "flow experiences" in educational games, advocating for the integration of educational theory with game mechanics (Kiili et al., 2012). His frameworks are particularly useful for educators seeking to balance cognitive load, engagement, and instructional effectiveness within gamified settings.

Game-based learning environments are intentionally designed to promote high levels of student motivation and engagement, particularly when tackling complex subjects. These environments offer learners the freedom to explore and interact with game elements that reinforce knowledge acquisition (Taub et al., 2020). A distinguishing feature of such environments is their capacity to deliver effective and immersive educational experiences (Emerson et al., 2020). Well-designed game-based instruction fosters motivation and decision-making skills in real-world scenarios (Hou, 2012). Such environments provide innovative settings that enhance student engagement and academic performance (Hsieh et al., 2013). Research confirms that the emotionally engaging nature of games supports learning processes (Ninaus et al., 2019). Serious games enhance education by offering realistic simulations and emotionally resonant contexts (Bellotti et al., 2011), highlighting the need for rigorous scientific and engineering methodologies in their development. This underscores the necessity of closer collaboration across all stakeholders involved in the serious game's lifecycle, with pedagogy playing a central role.

Together, these scholars have advanced a multi-dimensional view of GBL that incorporates affective, motivational, cognitive, and socio-technical elements. Their contributions continue to inform both the theoretical foundations and practical design of game-based interventions across educational levels and disciplines. In light of their work, the development of new pedagogical models gains greater relevance, as it aligns with the principles of emotional engagement, user immersion, and experiential learning espoused by the GBL literature.

2.2 Entrepreneurship Education

When searching for the term "entrepreneur* education" in high-impact databases such as Scopus, an analysis of the results provided by the platform reveals that publications on the topic have been steadily increasing since the first decade of the 2000s. In the 2000s, the highest peak occurred in 2010 with 153 documents, while in the second decade of the 2000s, the highest peak was recorded in 2024, with nearly 900 documents.

Of the 7,301 results retrieved by the platform (as of early May 2025), the top 10 countries with the highest proportion of documents by affiliation are China, the United States, the United Kingdom, Malaysia, Germany,

Spain, India, Indonesia, Finland, and South Africa, respectively. The most prolific author in this field is Alain Jean Claude Fayolle, with over fifty publications, making him a key reference in these topics.

The most cited document, with 1,033 citations, presents a systematic review of the impact of entrepreneurship education (EE) in higher education, emphasizing the relationships between pedagogical methods and specific outcomes. It calls for further research on the impact of university-based entrepreneurship education, particularly those related to emotion and mindset (Nabi et al., 2017). Notably, efforts to equip students with teamwork skills using games as a pedagogical resource have been highlighted (Verzat et al., 2019).

EE has evolved through a variety of theoretical lenses (Talukder, Lakner, and Temesi, 2024), reflecting its growing interdisciplinary nature. One of the most widespread approaches is the competency-based framework, which emphasizes the development of individual entrepreneurial skills such as creativity, leadership, and resilience, with a strong focus on employability (Nabi et al, 2017). In parallel, pedagogical or andragogical models have stressed the value of active methodologies, such as project-based learning and experiential education, where the learner assumes an active, central role. Additionally, the institutional or ecosystem perspective highlights the university's role as a key actor connecting industry, government, and society, often positioning EE as a catalyst for innovation and knowledge transfer.

Despite their contributions, these frameworks are not without limitations. Critical and emancipatory approaches have challenged the prevailing utilitarian and market-oriented visions of entrepreneurship, advocating instead for frameworks grounded in agency, critical narrative, and social transformation (Talukder, Lakner, and Temesi, 2024). Similarly, gendered and intersectional perspectives have drawn attention to structural inequalities embedded in entrepreneurial ecosystems, promoting more inclusive and context-sensitive educational models. The sustainable and social entrepreneurship framework has further argued for the integration of the SDGs, emphasizing ethical, environmental, and societal impact. However, in practice, these emerging paradigms often face implementation challenges, such as methodological fragmentation, lack of curricular integration, or limited institutional support. In response to these persistent gaps, the following section introduces a pedagogical model that seeks not only to integrate these diverse theoretical traditions but also to operationalize them through a game-based, interdisciplinary, and socially anchored educational approach.

3. Methodology

This study employed a mixed methods design to explore the impact of the Game Over (GO!) model on entrepreneurship education. Conducted at the Technological University of Bolívar (UTB) between 2023 and 2025, within the mandatory Creativity and Entrepreneurship course, the research adopted an applied, exploratory, and descriptive approach. Data were collected across five editions of the course, involving 652 students from diverse disciplines, including Social Sciences, Business, and Engineering, who collaboratively designed 117 game-based prototypes. Additionally, 11 external judges from industry and academia participated in the evaluation process, and student-led teaching evaluations were reviewed to assess the course's effectiveness, relevance, and innovative methodology.

3.1 About our Course Model Methodology

Students engage in physical game design, advancing through prototyping levels and testing market viability. The challenge prompt positions students as 'business detectives' uncovering concealed organizational challenges to address through game-based solutions.

Our pedagogical model

We propose an innovative model aimed at fostering creativity and entrepreneurship in higher education: *The Expedition Route – Game Over GO!* This model has been carefully documented and designed to develop core competencies in creativity, innovation, and entrepreneurial thinking among undergraduate students. The model is structured as a playful expedition with progressive stages, integrating elements from active learning methodologies such as Design Thinking, Lean Startup, Challenge-Based Learning (CBL), and Gamification. Its implementation transforms the learning process into an immersive experience that stimulates critical thinking, problem-solving, and the creation of social or business value.

Creativity and entrepreneurship have become essential competencies in higher education, particularly in the context of digital transformation, climate change, and social crises. Traditionally, these subjects have been approached through theoretical frameworks, often neglecting the value of active and experiential learning. In response to this need, the GO! model presents an educational journey divided into multiple stages, where students confront real-world challenges through prototyping, user validation, and business model development.

The stages of empathy, definition, ideation, prototyping, and testing are present throughout the proposed expedition route. Support tools such as cognitive immersion and empathy maps correspond to the early phases of Design Thinking and facilitate a deep understanding of user needs. The model incorporates tools like the Lean Canvas, external and campus-based validations, and short-form pitch sessions, which are central elements of the Lean Startup methodology, allowing for rapid iteration on user-centred prototypes.

The model begins with the launch of a challenge that activates the educational process. This pedagogical strategy promotes engagement, real-world connections, and the development of transversal skills such as leadership, teamwork, and creativity. The use of the term "expedition", the phased structure, challenges, tests, and the final GO! festival with juried presentations are gamification mechanisms that enhance intrinsic motivation, a sense of achievement, and student engagement.

Model description -The Expedition Route: Game Over GO!

The expedition consists of eight sequential phases plus a final phase, during which student teams publicly present their projects in a simulated academic-game setting. Each phase includes specific tools that guide the development process.

Table 1: The expedition route: Game Over GO! -From brief to boardgame

Badge	Name	Description	Objective		
40	The Signal	Launch of the design challenge	Detecting the call to adventure: understanding the core challenge or opportunity.		
	The Sketch First low-fidelity prototype The Encounter Validation & playtesting		Daring to draw the first map: transforming ideas into tangible concepts.		
			Facing the field: testing ideas with users, clients, and experts.		
	The Spark	Value proposition design	Distilling the why: identifying what makes the game matter and work.		
	The Mask	Branding & creative refinement	Giving the game its identity: refining aesthetics, components, and tone.		
000	The Market & competitor analysis		Mapping the terrain: understanding where the game fits and stands out.		
	The Engine	Business model	Fueling the future: designing how the game creates, delivers, and captures value.		
	The Voice	Pitch preparation	Crafting the story: how to present and persuade with impact.		

The Game Over (GO!) course model represents a compelling pedagogical innovation in entrepreneurship education (EE), addressing several well-documented shortcomings in the field. Recent high-impact literature has called for a shift away from abstract, business-plan-centric approaches towards more experiential, socially embedded, and emotionally resonant forms of entrepreneurial learning. GO! directly responds to this call through its expedition-based structure, which integrates design thinking, gamification, and real-world problem-solving.

Firstly, the course cultivates interpersonal skills such as leadership, effective communication, and teamwork, competencies widely recognised as essential yet often underdeveloped in traditional EE. By intentionally forming interdisciplinary teams across faculties, GO! simulates the complexity of authentic entrepreneurial environments, where collaboration across diverse domains is standard practice. "One of the greatest strengths of this initiative is the involvement of students from diverse academic backgrounds. This interdisciplinarity leads to more comprehensive solutions and game designs that tackle challenges from multiple perspectives. It was particularly striking to witness Finance students developing a game on consumer rights, or engineering students designing a game focused on mental health, simply remarkable" (testimony of one of the external judges)

Secondly, GO! fosters a genuine entrepreneurial mindset, placing strong emphasis on resilience, iterative thinking, and action orientation. These are not treated as abstract ideals but emerge organically as students face critical feedback, encounter failure, and adapt their designs. By embracing failure as part of the learning process, GO! aligns with the "entrepreneurship as practice" perspective, in which action, reflection, and iteration are central. Thirdly, the course facilitates meaningful and transferable learning by requiring students to test their creations in unsimulated, real-world contexts. This degree of immersion enhances knowledge retention and practical relevance, reinforcing the argument that EE must engage with real-world complexity. In GO!, students validate their game-based prototypes in industry settings, often refining them multiple times, demonstrating a genuine feedback-driven design process. "We are grateful to UTB for aligning with our "day without the blackboard" strategy and for engaging our schoolteachers in making their lessons more dynamic. Developing the bank of educational needs for students to work on real solutions was a brilliant initiative" (testimony of one of the external judges)

Perhaps most significantly, GO! links innovation with social value creation, guiding students to develop prototypes rooted in sustainability and global challenges. This reflects a broader shift towards transformative entrepreneurship education, which transcends profit-making to incorporate societal and environmental concerns. Finally, GO! embeds students in interactions with industry stakeholders, reinforcing the "entrepreneurial ecosystem" approach. This grounds learning in authentic social contexts and equips learners with both hard and soft skills necessary to navigate uncertainty, complexity, and change.

The entire model is complemented by other complementary activities like wildcard missions and real cases

Wildcard Missions: wildcard challenges are surprise tasks introduced weekly to test students' creativity and entrepreneurial skills. Imagine a secret door opening each week, filled with mysteries and possibilities, where students must use their knowledge and ingenuity to overcome unexpected challenges. At least three wildcard challenges are carried out each semester, with students working in groups. One example of a wildcard challenge introduced in January 2025 was "Chicha" of the Future. Chicha is the name given to various types of beverages primarily derived from the non-distilled fermentation of maize and other cereals native to the Americas. Students were tasked with discovering the best alchemist team for chicha, working in groups to develop an innovative proposal that reimagined chicha with new ingredients, presentations, or unexpected uses. The outcomes included presentations of novel products based on chicha, incorporating unconventional ingredients such as ginger or unique formats like a cream.

Learning Based on Real Cases of Green Entrepreneurs: Green Business Talks (GBT) is an initiative that compiles real stories of entrepreneurs who have overcome challenges with creativity and resilience (Marrugo-Salas & Pérez, 2024). Learn more here: https://www.utb.edu.co/green-business-talks/

Each story represents a piece of knowledge that students must collect to uncover the secrets of entrepreneurial success. This innovative platform has, in recent years, gathered nearly 60 cases of social entrepreneurship models, mainly in Colombia, but also featuring cases from Mexico, Brazil, and Chile. Each group is assigned a case, and in a specific session, they must present their analysis results through:

- A visual map.
- At least one gamified activity to verify their classmates' learning.
- The design of at least five guiding questions related to the course topics.
- The use of storytelling connected to the case in their presentation.

All the above contributes to the design of the proposed model and enables students to engage in real immersion in game-based learning, not only in their final project but throughout the course experience.

3.2 Game Over -GO! Fest

The GO! model culminates in a biannual festival that showcases high-fidelity game prototypes developed by students, often in collaboration with external organisations. The event combines a public exhibition with a private evaluation session modelled on the 'Shark Tank' format, fostering both visibility and critical appraisal. It engages a diverse audience, including educators seeking to gamify learning environments, companies exploring innovative problem-solving approaches, and creative professionals interested in designing games that are both educational and impactful, positioning GO! as a dynamic platform for experiential learning and cross-sector collaboration.

Figure 1: Participants GO! 2023-01

Figure 2: Juries GO! 2024-01

Figure 3: Winner GO! 2024-20

Results and Discussion

Participant Demographics and Prototypes Developed

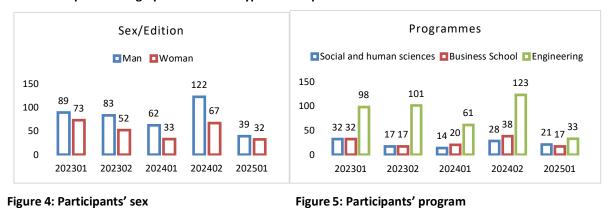


Figure 4: Participants' sex

Table 2: GO! Resume

GO! (Edition)	Participating Courses		Number of prototypes	Prototypes/Total (%)	Juries	Winning Game	Theme
2023: 1.0	4 courses	162	21	18%	2	Zero	Gender equality

GO! (Edition)	Participating Courses	Number of students impacted	Number of prototypes	Prototypes/Total (%)	Juries	Winning Game	Theme
2023: 2.0*	4 courses	135	29	25%	2	"Duelo de mentes"	Primary Education (Science, Mathematics, History)
2024: 3.0*	3 courses	95	18	15%	3	"Lex Lúdica"	Consumer rights
2024: 4.0	4 courses	189	34	29%	4	Science Slam	Education (Science)
2025: 5.0	2 courses	71	15	13%	3	"JugArte" and Check In	Social inclusion and development (autism) / Passenger rights in air transport
Total		652	117	100%			

Prototype Evaluation Results

Prototypes were evaluated based on four qualitative criteria and based on a scale: (0-5 points)

- 1. Innovation: Novelty and originality of the game concept.
- 2. Business Model: Feasibility of the game as a sustainable solution.
- 3. Quality: Design, aesthetics, and functionality of the game.
- 4. Communication: Effectiveness of the game's presentation and storytelling.

Sustainable Development Goals -SDGs

The initiative directly contributes to several SDGs, particularly depending on the themes explored by the games. In reviewing the topics addressed in the games, we identified the Sustainable Development Goals (SDGs) to which they directly contribute. This analysis involved comparing each SDG target with the specific objectives of the games. The SDGs identified were 3, 4, 5, 8, 9, 10, 11, and 12. In some cases, interrelated SDGs were observed, particularly in games focused on environmental education.

Figure 6: High-fidelity prototype called "2085" associated with SDG 6 and SDG 12 and 13

The analysis showed that 80% of the prototypes developed were directly aligned with one or more SDGs, with the most frequent being:

- **SDG 4:** Games related to preparation for ICFES exams (higher education entrance tests), vocational guidance, teaching in primary and secondary education (miscellaneous), entrepreneurship education, professional education, and financial education, among others.
- **SDG 3:** Games focused on mental health, road safety education, sexual education, workplace wellbeing, and drug prevention, among others.

• **SDG 12:** Games aimed at environmental education, covering topics such as circular economy, waste management, water, energy, and climate change, among others.

From these results, we can conclude that students are most interested in developing physical games that contribute to sustainability, with a particular focus on SDGs 4, 3, and 12. This demonstrates their motivation to address the challenges of their environment.

4.2 Perceptions

The analysis was conducted using constructivist grounded theory methodology combining empirical data collection with iterative coding. A total of 11 semi-structured interviews were conducted with evaluators who participated as jurors during the 2023 and 2025 editions of the event. Interviews were conducted in person, each lasting approximately 30 minutes on average. The participants, reflects on her role as an evaluator, offering rich insights into the learning, design, and engagement dynamics of the event.

Table 3: Axial coding

Emerging categories	Description and testimonies
Transformative potential of play	"The game remains a powerful tool to transform the way we learn, understand, and undertake."
	This category highlights how play is perceived not merely as entertainment but as a pedagogical instrument for transformation, particularly in learning environments. It aligns with literature on game-based learning and experiential education
Multidimensional evaluation of prototypes	"I appreciated those prototypes that balanced aesthetics, gameplay, and educational content."
	The testimony foregrounds a triadic model of evaluation: aesthetic design, mechanics, and formative content. This suggests a holistic assessment framework for educational games.
Emotional and social engagement	"We were all debating rules, the device itself, team roles and personal experiences."
	The reference to collective reflection indicates the emergence of affective learning spaces through play, where emotional engagement fosters deeper cognitive and social impact.
Need for iterative development	"I would suggest a prior pitch phase or rehearsal."
	This suggests the need for a scaffolded learning model, where iterative cycles of feedback and refinement are embedded in the creative process.
Bridging academia and real-world needs	"These spaces are key to connecting academia with the real environment."
	A significant theme is the alignment of educational initiatives with social realities, reinforcing the civic and practical value of project-based learning.

Selective coding: core category

"Game-based experiential learning as a transformative bridge between academic creativity and real-world problem-solving." All themes coalesce into a central grounded theory: that Game Over acts as a platform for transformative learning where students, through gamified creation, synthesise creativity, social responsibility, and interdisciplinary collaboration. This analysis contributes to the growing body of knowledge on game-based learning ecosystems by highlighting how jury experiences provide feedback loops essential for programme evolution. Moreover, the reflection implies that jurors not only evaluate but also learn, suggesting their role as co-constructors of the pedagogical experience. It also supports the integration of design thinking methodologies in education, where play, iteration, and narrative converge to foster innovation, empathy, and critical dialogue.

Testimonials reveal the pedagogical power of play, not just as a student tool but as a multistakeholder engagement strategy. It calls for further incorporation of reflective and iterative practices within educational game design and supports the expansion of Game Over as a scalable and meaningful model in higher education.

Student feedback reveals a consistently positive perception of the Game Over (GO!) course model, highlighting its practical orientation, creativity, and pedagogical innovation. A review of teaching evaluations from GO! courses delivered between 2023 and 2025 further supports these findings. One student noted that the course "teaches students to become entrepreneurs and business owners, not employees, which is what is needed nowadays" (S15), while another emphasised the value of applying theory to practice by "creating an innovative and creative business model" (S50). The engaging nature of the methodology was frequently mentioned, with participants describing the activities as "novel" (S120), "hands-on" (S70), and conducive to both cognitive and creative development (S150). Others praised the varied forms of assessment and the instructor's commitment to the teaching process: "a wide range of assessment methods helped open our minds and encouraged creativity" (S200). Moreover, the relevance of the content to real-life contexts was recognised as a key strength (S350), alongside the structured completion of themes and the enjoyment of the GO! activity itself (S100). Collectively, these reflections suggest that the GO! model successfully fosters entrepreneurial mindsets, enhances engagement through experiential and creative methodologies, and bridges academic content with real-world application.

4.3 Expanding, Challenging, and Refining Existing Frameworks

This study extends existing conceptual frameworks in EE by introducing a transformative pedagogical model grounded in experiential learning and the design of physical games. Unlike traditional approaches, which often rely on theoretical instruction or digital simulations, GO! model creates immersive environments where students act as active agents in processes of design and innovation. This model not only fosters essential entrepreneurial skills, such as creativity, resilience, and problem-solving, but also aligns directly with SDGs, thereby positioning entrepreneurship as a tool for social transformation rather than merely economic advancement.

The bibliometric review conducted by Talukder, Lakner, and Temesi (2024) underscores that EE encompasses more than the technical transfer of knowledge. It also involves drawing attention to relevant societal issues, promoting personal growth, and nurturing a deep sense of self-efficacy. In Global South contexts, EE assumes a particularly strategic role as a driver of socio-economic development. In doing so, students are exposed to a universe of possibilities, as the games they design are potential income-generating alternatives. Notably, the model has revealed a particular interest among systems engineering students in converting their physical game prototypes into digital formats, opening up entrepreneurial pathways in the creative and tech industries. GO! challenges conventional models of entrepreneurship education that predominantly emphasise business content and economic outcomes. Instead, it proposes an "expedition route" that privileges iterative learning, user empathy, and social value creation. In this regard, GO! not only introduces a novel didactic methodology but also contributes to reconfiguring the epistemological underpinnings of how entrepreneurship is conceptualised within higher education. Ultimately, GO! refines and enriches existing frameworks by foregrounding physical game design as a pedagogical medium that mediates between academic creativity and real-world challenges. The empirical evidence gathered reveals that games, when carefully designed, are far from superficial motivational tools; instead, they function as transformative bridges between theory and action. By fostering emotion, interdisciplinary collaboration, and critical thinking, GO! positions itself as a scalable and contextsensitive model with strong potential to enhance entrepreneurial learning processes across diverse educational environments.

5. Conclusion

This study presents Game Over (GO!) as an innovative, practice-oriented model for entrepreneurship education, grounded in experiential learning, interdisciplinary collaboration, and real-world problem-solving. Beyond its pedagogical contributions, this research is particularly significant as it emerges from a Global South context, specifically, a Colombian higher education institution actively engaging with local realities and global challenges.

In a field historically dominated by models and frameworks developed in the Global North, the visibility of context-sensitive, socially grounded educational innovations from the Global South is crucial. Initiatives like GO! challenge one-size-fits-all approaches and demonstrate how entrepreneurship education can be reimagined to address both local needs and global priorities, such as the Sustainable Development Goals. They also highlight the creative potential of underrepresented regions to contribute to global academic and pedagogical discourse.

By showcasing a model that integrates sustainability and applied learning within a developing country context, this study contributes to the diversification of knowledge production in entrepreneurship education. It calls for greater recognition and dissemination of Southern-led innovations that offer scalable, impactful, and culturally relevant alternatives to traditional pedagogical practices.

Future Research and Recommendations

- Expand GO! to other Universities: Test the model in different cultural and institutional contexts to assess its adaptability.
- Enhance presentation skills: Integrate a pitch rehearsal phase to help students improve their storytelling abilities.
- Strengthening industry partnerships: continue to engage external stakeholders for more authentic and challenging problem scenarios.
- Long-Term impact assessment: conduct longitudinal studies to evaluate the long-term impact of GO! on students' entrepreneurial skills and career trajectories.

By turning classrooms into playgrounds for problem-solving, GO! equips students to be architects of change, not passive learners. ¿Ready to play the future of entrepreneurship education?

Ethical declaration: This research was conducted in accordance with the ethical and regulatory guidelines of the Technological University of Bolívar, with institutional approval for its execution. All participants involved in the study provided informed consent after receiving a detailed explanation of the research objectives, methodology, confidential use of data, and their right to withdraw at any time without consequences. Collected data were anonymized and stored under strict security protocols, in compliance with Colombian personal data protection regulations (Law 1581 of 2012).

Al declaration: Regarding the writing and linguistic adaptation process, Al-powered tools were employed to support the translation of content from English to Spanish. Machine-generated translations underwent critical review and manual adjustments by the authors to ensure technical accuracy, contextual coherence, and cultural appropriateness. This hybrid approach (AI + human oversight) preserved academic integrity and enhanced the document's communicative clarity.

References

- Bellotti, F., Ott, M., Arnab, S., Berta, R., De Freitas, S., Kiili, K. and De Gloria, A., 2011. Designing serious games for education: from pedagogical principles to game mechanisms. *Proceedings of the 5th European Conference on Games Based Learning*, pp.26–34. Greece: University of Athens.
- Chang, K.E., Chang, C.T., Hou, H.T., Sung, Y.T., Chao, H.L. and Lee, C.M., 2014. Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. *Computers & Education*, 71, pp.185–197.
- Emerson, A., Cloude, E.B., Azevedo, R. and Lester, J., 2020. Multimodal learning analytics for game-based learning. *British Journal of Educational Technology*, 51(5), pp.1505–1526. https://doi.org/10.1111/bjet.12992
- Hou, H.T., 2012. Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). *Computers & Education*, 58(4), pp.1225–1233.
- Hou, H.T., 2015. Integrating cluster and sequential analysis to explore learners' flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. *Computers in Human Behavior*, 48, pp.424–435.
- Hou, H.T. and Keng, S.H., 2020. A dual-scaffolding framework integrating peer-scaffolding and cognitive-scaffolding for an augmented reality-based educational board game: An analysis of learners' collective flow state and collaborative learning behavioral patterns. *Journal of Educational Computing Research*, 59(3), pp.547–573. https://doi.org/10.1177/0735633120969409
- Hsieh, Y.H., Lin, Y.C. and Hou, H.T., 2013. Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. *Interactive Learning Environments*, 24(1), pp.178–193. https://doi.org/10.1080/10494820.2013.834827
- Kiili, K., 2005. Digital game-based learning: Towards an experiential gaming model. *The Internet and Higher Education*, 8(1), pp.13–24.
- Kiili, K., De Freitas, S., Arnab, S. and Lainema, T., 2012. The design principles for flow experience in educational games. *Procedia Computer Science*, 15, pp.78–91.
- Marrugo-Salas, L. and Pérez, J., 2024. Capítulo 11. Tejer voces de negocios verdes: experiencias multiactores para un ecosistema de emprendimiento sostenible en la región Caribe. In: *Desarrollo y promoción de ecosistemas de emprendimiento regionales: Casos, experiencias y buenas prácticas*. Bogotá: Universidad del Rosario, p.11.

- Moreno, R., Mayer, R., Spires, H. and Lester, J., 2001. The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? *Cognition and Instruction*, 19(2), pp.177–213. https://doi.org/10.1207/S1532690XCI1902_02
- Nabi, G., Liñán, F., Fayolle, A., Krueger, N. and Walmsley, A., 2017. The impact of entrepreneurship education in higher education: A systematic review and research agenda. *Academy of Management Learning & Education*, 16(2), pp.277–299.
- Ninaus, M., Greipl, S., Kiili, K., Lindstedt, A., Huber, S., Klein, E. and Moeller, K., 2019. Increased emotional engagement in game-based learning: A machine learning approach on facial emotion detection data. *Computers & Education*, 142, p.103641.
- Sabourin, J. and Lester, J., 2014. Affect and engagement in game-based learning environments. *IEEE Transactions on Affective Computing*, 5(1), pp.45–56. https://doi.org/10.1109/T-AFFC.2013.27
- Taub, M., Azevedo, R., Bouchet, F. and Khosravifar, B., 2020. The agency effect: The impact of student agency on learning, emotions, and problem-solving behaviors in a game-based learning environment. *Computers & Education*, 147, p.103781.
- Talukder, S.C., Lakner, Z. and Temesi, Á., 2024. Development and state of the art of entrepreneurship education: A bibliometric review. *Education Sciences*, 14(3), p.295.
- Verzat, C., Byrne, J. and Fayolle, A., 2009. Tangling with spaghetti: Pedagogical lessons from games. *Academy of Management Learning & Education*, 8(3), pp.356–369.