Neuroplastic Reflective Game Design: A Framework Bridging Neuroscience and Game-Based Learning

Anjuman Shaheen¹, Lowenna Whitehead¹ and Panagiotis Fotaris²

¹The Games Academy, Falmouth University, UK

²School of Architecture, Technology and Engineering, University of Brighton, UK

Anjuman.Shaheen@falmouth.ac.uk lw260328@falmouth.ac.uk P.Fotaris@brighton.ac.uk

Abstract: This paper introduces Neuroplastic Reflective Game Design (NRGD), a theoretical framework that bridges neuroscience and game-based learning by linking reflective gameplay to underlying neuroplastic mechanisms. Neuroplasticity, the brain's capacity to reorganise neural connections, underpins learning, memory, and adaptability, yet its potential role in educational design remains underexplored. Reflection, defined as the deliberate evaluation of experience, engages prefrontal and cingulate regions, reinforcing executive functions and long-term retention. Digital games provide fertile ground for embedding structured reflection because they combine immersion, interactivity, and feedback, but their capacity to deliberately support neuroplasticity has not been systematically theorised. A structured literature review synthesised insights from neuroscience, education, and game design. The review revealed that while each domain offers valuable perspectives, such as neural mechanisms of plasticity, pedagogical models of reflection, and gamebased scaffolds for metacognition, they remain siloed. Neuroscience often stops at describing mechanisms, education frames reflection as pedagogy without neural grounding, and games emphasise engagement without connecting to brain adaptability. To address this, the study investigates three guiding questions: (1) how reflective game design can be theoretically extended to support neuroplasticity within digital learning environments; (2) which cognitive and neural mechanisms may be activated through reflection in gameplay; and (3) what design principles can be derived to inform future interdisciplinary work. The NRGD framework responds through four cyclical phases (Gameplay, Assessing Conceptualisation, Active Experimentation in Level Up, and Reflective Feedback). Each one is mapped to cognitive functions and neural processes such as long-term potentiation, synaptogenesis, and error-driven adaptive rewiring. An illustrative example in music theory demonstrates how these phases can be operationalised in practice, and a summary table aligns design features with their associated neurocognitive outcomes. The framework offers practical value for educators and instructional designers seeking deeper learning, for game developers aiming to align mechanics with cognitive science, and for neuroscientists and clinicians exploring applications in neurorehabilitation, lifelong learning, and therapy. While conceptual in nature, the framework also identifies directions for empirical validation, methodological refinement, and adaptation across domains. By bridging pedagogy and neuroscience, NRGD establishes a novel theoretical foundation for designing digital games that are both pedagogically effective and biologically grounded.

Keywords: Neuroplasticity, Reflective learning, Game-Based learning, Reflective game design, Cognitive neuroscience, Educational technology

1. Introduction

Neuroplasticity, the brain's capacity to reorganise neural pathways in response to experience, underpins learning, memory, and adaptability, thus making it central to deep and transferable educational outcomes (Draganski et al., 2004; Kleim & Jones, 2008). Reflection is defined as the critical examination of one's experiences to generate insight and guide future action (Dewey, 1933; Schön, 1983). It strengthens the processes of metacognition and executive control that may also support neuroplastic change (Fleming & Dolan, 2012; Immordino-Yang & Damasio, 2007).

Digital games provide fertile ground for embedding such reflection. Their interactivity, feedback, and immersion allow learners to test strategies, reconsider decisions, and connect gameplay to broader knowledge, leading some to describe them as "reflection machines" (Khaled 2018; Gee, 2003; Squire, 2011). Reflective Game Design (RGD) builds on this potential by formalising how games can scaffold reflection through feedback loops, prompts, and social discourse (Shaheen & Fotaris, 2024b; Villareale et al., 2020). Yet, despite its adoption in game-based learning, the potential of reflective games to explicitly support neuroplasticity has not been systematically theorised.

Figure 1 presents the conceptual foundation of this study. It rests on three premises: (i) reflective learning supports neuroplasticity (Clark, 2016; Davis, 1997; Fleming & Dolan, 2012; Immordino-Yang & Damasio, 2007; Schön, 1983; Zeidner et al., 2009); (ii) digital games are effective vehicles for structured reflection (Khaled, 2018; Shaheen & Fotaris, 2024b; Villareale et al., 2020); and (iii) combining these strands suggests that reflective digital games may deliberately enhance neuroplasticity by aligning gameplay with reflection.

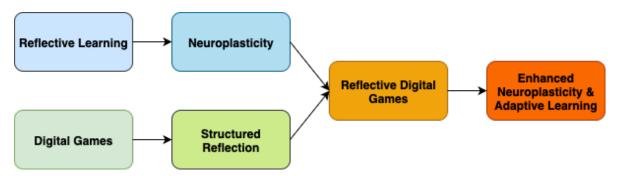


Figure 1: Conceptual framework of the study. Reflective learning supports neuroplasticity; digital games provide structured reflection; their integration (reflective digital games) is proposed to enhance neuroplasticity

Accordingly, this study is guided by the following research questions:

- RQ1: How can Reflective Game Design (RGD) be extended to incorporate neuroplastic mechanisms within digital learning environments?
- RQ2: Which cognitive and neural processes may be activated through reflective practices embedded in gameplay?
- RQ3: What design principles can be derived to guide educators, game designers, and neuroscientists in leveraging reflection to support neuroplasticity?

2. Literature Review

2.1 Neuroplasticity in Learning

While the introduction established neuroplasticity as a foundation for adaptive learning, this section expands on the specific mechanisms through which it operates. Neuroplasticity manifests in two primary forms: structural plasticity, involving physical changes such as neurogenesis and dendritic branching, and functional plasticity, where brain regions reorganise, roles following experience or trauma (Mateos-Aparicio & Rodríguez-Moreno, 2019). These changes are supported by processes including long-term potentiation (LTP), long-term depression (LTD), and spike-timing dependent plasticity (STDP), which regulate the strengthening or weakening of synaptic connections (Lynch, 2004).

Research has identified key brain regions implicated in these adaptive processes. The prefrontal cortex supports working memory and cognitive control, the anterior cingulate cortex (ACC) monitors errors and regulates responses, the parietal lobes contribute to attentional control, and the hippocampus consolidates long-term memory (Edwards et al., 2023; Mishra & Gazzaley, 2014). These functions parallel the demands of digital games, which require sustained attention, adaptive strategy, and integration of new knowledge across contexts.

However, despite strong evidence from neuroscience, translation into educational and design practice remains limited. "Neuroplasticity" is often invoked in education metaphorically, without clear operationalisation in pedagogical interventions (Bruer, 1997; Howard-Jones, 2014). While some studies explore attention, motivation, and reward systems in learning (Bassett et al., 2011; George et al., 2023), few propose systematic principles for deliberately engaging neural adaptability.

2.2 Reflection in Learning

Whereas Section 2.1 detailed the neural mechanisms of plasticity, this section turns to reflection as a cognitive and pedagogical process that can activate those mechanisms. Kolb's (1984) experiential learning theory positioned reflection as the bridge between experience and conceptualisation, while later models such as Mezirow's (1994) transformative learning and Zimmerman's (2013) self-regulated learning highlight its function in performance monitoring, critical awareness, and motivation. Structured practices, including journaling, dialogue, and metacognitive prompts, have been shown to enhance problem-solving, transfer of knowledge, and critical thinking (Mezirow, 1991; Davis, 1997) while also improving persistence and self-efficacy (Zeidner et al., 2009).

Neuroscientific evidence complements these educational perspectives; it demonstrates that reflection activates prefrontal and cingulate regions associated with executive control, self-monitoring, and cognitive

flexibility (Løvstad et al., 2012). These processes engage long-term potentiation (LTP) and synaptic pruning (illustrated in Figure 2), which are mechanisms that strengthen relevant pathways while reducing less efficient ones (Costandi, 2016; Chen & Goodwill, 2022). Such mechanisms suggest that reflection can be understood not only as a pedagogical strategy but also as a neurocognitive driver of adaptive change (Fleming & Dolan, 2012).

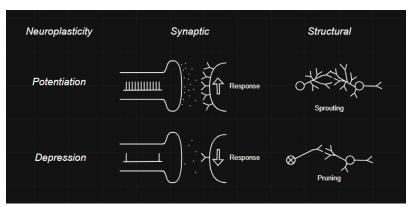


Figure 2: The illustration is drawn to show the process of potentiation (sprouting) and long-term depression (pruning) synapsis

2.3 Reflective Features in Games

Having established reflection as a key mechanism for adaptive learning, this section examines how digital games provide distinctive opportunities to scaffold reflection. Building on Schön's (1983) distinction between reflection-in-action (during gameplay) and reflection-on-action (after gameplay), research demonstrates that games can support both forms through interactive feedback and immersive design (Lin et al., 1999; Villareale et al., 2020).

Lin et al. (1999) proposed a model of reflective scaffolding that was later adapted for game contexts (Villareale et al. 2020). Common features include:

- Process Displays: visual aids such as Heads-Up Displays (HUDs) and dashboards that make implicit processes explicit, enabling players to monitor progress and reflect on ongoing actions (Figure 3 (a)).
- *Process Prompts: in-*game guidance or feedback that encourages players to evaluate decisions and articulate strategies (Figure 3 (b)).
- *Process Models:* benchmarks or examples against which players can compare their performance, helping to identify strengths and weaknesses (Figure 3 (c)).
- Social Discourse: collaborative features such as chat or multiplayer interaction that facilitate shared reflection and peer feedback (Figure 3 (d)).

These elements scaffold both individual and collective reflection, strengthening metacognition and supporting transfer of knowledge (Shaheen & Fotaris, 2024a). However, most studies remain pedagogical in focus and emphasise outcomes such as critical thinking or engagement without examining whether such reflective mechanics also stimulate underlying neurocognitive mechanisms (e.g., error correction in the anterior cingulate cortex or memory consolidation in the hippocampus). This gap highlights the need for models that explicitly link reflective features in games to neuroplastic processes.

(a) Process Displays

(b) Process Prompts

(c) Process Model

(d) Social Discourse

Figure 3: Examples of reflective game features: (a) process displays (e.g., anxiety meters on top left) (Shaheen & Fotaris, 2024a); (b) process prompts (Shaheen & Fotaris, 2024a); (c) process models comparing player feelings pre- and post-activity (Shaheen & Fotaris, 2024a); (d) multiplayer audio communication in Fortnite (Epic Games, 2017)

2.4 Gap Analysis

Although valuable insights have emerged across the three strands of literature, persistent disconnections remain. Neuroscience explains mechanisms of plasticity such as long-term potentiation and neurogenesis, but rarely translates them into actionable design principles for learning (Bruer, 1997; Howard-Jones, 2014). Reflection research highlights its role in metacognition and executive function, yet seldom theorises its direct neurocognitive implications (Mezirow, 1991; Fleming & Dolan, 2012). Game-based learning demonstrates the pedagogical value of reflective scaffolds but typically stops short of linking them to neuroplastic outcomes (Gee, 2003; Khaled, 2018). Taken together, these strands remain siloed: neuroscience describes mechanisms, education frames reflection as pedagogy, and games showcase reflective potential.

To address this fragmentation, the next section revisits RGD as a pedagogical foundation before extending it into the proposed Neuroplastic Reflective Game Design (NRGD) framework, which theorises how reflective game features may be aligned with neuroplastic processes.

3. From Reflective Game Design to Neuroplastic Reflective Game Design

3.1 Reflective Game Design Framework: A Pedagogical Foundation

The RGD framework an iterative model for structuring reflective feedback in GBL, was introduced by Shaheen et al. (2022). It builds on experiential learning theory (Kolb, 1984) to structure how games embed reflection into the learning process. It distinguishes between reflection-in-action (during gameplay) and reflection-on-action (after gameplay), operationalising both through iterative feedback loops. Figure 4 illustrates the four cyclical phases of RGD:

- Gameplay: players engage in concrete experiences that form the basis for reflection.
- Assessing Conceptualisation: formative or summative tasks prompt learners to evaluate and interpret their actions.
- Level-Up: players reapply acquired knowledge in new contexts, reinforcing transfer and adaptation.
- Reflective Feedback: feedback mechanisms encourage strategy adjustment and deeper processing.

These phases promote metacognitive development by requiring learners to monitor, evaluate, and refine their strategies. Applications of RGD in serious games demonstrate benefits for critical thinking and problem-solving (Shaheen et al., 2022; Shaheen & Fotaris, 2024b). However, RGD remains pedagogical in scope: it explains how reflection supports learning but does not account for the neurocognitive mechanisms that may underpin these effects. This limitation motivates the extension toward the NRGD framework.

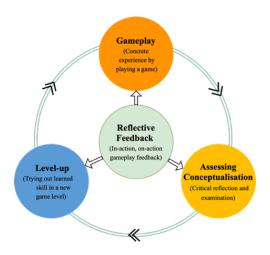


Figure 4: The Reflective Game Design (RGD) Framework (Shaheen et al., 2022)

3.2 Extending to the Neuroplastic Reflective Game Design Framework

The NRGD framework extends RGD by theorising how reflective practices embedded in gameplay may stimulate neuroplastic mechanisms. Whereas RGD conceptualises reflection as a pedagogical strategy, NRGD positions it as a potential biological driver of adaptive learning.

At its core, the framework rests on three principles. First, reflective practices are hypothesised to activate brain regions such as the prefrontal cortex, anterior cingulate cortex, and hippocampus, which are areas that support executive control, error monitoring, and memory consolidation. Through engagement, these regions may undergo long-term potentiation, synaptic refinement, and related processes of adaptive plasticity. Second, game mechanics can be understood as scaffolds for neuroplasticity: feedback loops, adaptive challenges, and metacognitive prompts stimulate activity-dependent changes, reinforcing motivation and learning through dopaminergic reward and skill reapplication. Third, NRGD integrates pedagogy with neuroscience, providing a model for why reflective gameplay can enhance not only learning outcomes but also brain adaptability.

Figure 5 depicts the four cyclical phases of the framework, adapted from RGD but extended to include explicit neurocognitive links.

- Gameplay (Sensory Integration and Engagement): Immersive, multisensory gameplay environments activate widespread neural networks, including prefrontal and sensory—motor regions. Repeated engagement fosters activity-dependent plasticity and is reinforced by motivational neuromodulators such as dopamine (Carrillo-Mora et al., 2017; Hötting & Röder, 2013).
- Assessing Conceptualisation (Metacognition and Plasticity): Critical evaluation of in-game decisions activates executive functions in the prefrontal cortex and anterior cingulate cortex, enhancing LTP and refining cognitive control (Maier et al., 2019).
- Level-Up (Reapplication and Consolidation): Reapplying knowledge or skills in new contexts consolidates neural circuits, promotes synaptogenesis, and may support hippocampal neurogenesis, strengthening transfer across domains (Kolb & Gibb, 2008).
- Reflective Feedback (Adaptive Learning and Error Correction): Timely, structured feedback activates error-correction circuits in the ACC and prefrontal-striatal loops, promoting adaptive rewiring and improving transfer of learning across contexts (Johnston, 2009).

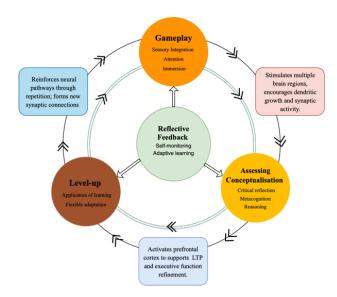


Figure 5: The Neuroplastic Reflective Game Design (NRGD) Framework adapted from RGD Framework

To illustrate how these phases can be operationalised in practice, consider a digital game for learning music theory. In the *Gameplay* phase, players explore a sound-based environment where movements synchronise with beats, activating auditory-motor pathways through multisensory immersion. During *Assessing Conceptualisation*, rhythm challenges prompt learners to use reflection tools to analyse differences between time signatures, engaging executive reasoning processes. In the *Level-Up* phase, players apply learned scales and rhythms to arrange a backing track, consolidating skills in a novel context and reinforcing adaptive pathways. Finally, in the *Reflective Feedback* phase, the game provides both in-action monitoring (e.g., pitch accuracy during composition) and on-action evaluation (e.g., comparing melodies after submission), prompting adaptive adjustment. Table 1 summarises these phases by aligning each with its cognitive function, underlying neuroplastic mechanism, and an illustrative design example.

Table 1: Mapping NRGD Phases to Cognitive Functions, Neuroplastic Mechanisms, and Illustrative Game Design

NRGD Phase	Cognitive Function	Neuroplastic Mechanism	Illustrative Example
Gameplay	Sensory integration, sustained attention, emotional engagement	Activation of auditory-motor cortices and prefrontal regions; activity-dependent plasticity; dopaminergic reinforcement	Players explore a sound-based map where movements synchronise with beats and notes, engaging multiple sensory pathways.
Assessing Conceptualisation	Critical reflection, metacognition, reasoning	Engagement of prefrontal cortex and ACC; supports long-term potentiation (LTP) and executive function refinement	After a rhythm challenge, players explain differences between time signatures using a reflection tool that prompts analysis.
Level-Up	Reapplication, transfer, consolidation	Synaptogenesis and hippocampal neurogenesis; reinforcement of adaptive pathways	Players apply learned scales and rhythms to arrange a backing track for a performance, consolidating skills in a novel context.
Reflective Feedback	Self-monitoring, error correction, adaptive adjustment	Activation of ACC and prefrontal–striatal loops; errordriven neural rewiring.	While composing, players receive pitch-accuracy feedback; after submission, their melody is compared to a target theme with revision prompts.

3.3 Limitations and Practical Implications

As a theoretical contribution, the NRGD framework has limitations that also shape its future application. First, it remains conceptual: while it integrates insights from neuroscience, education, and game design, empirical research is needed to confirm whether reflective mechanics in digital games indeed stimulate neuroplastic change. Second, methodological constraints, such as the cost, invasiveness, and ecological limitations of neuroimaging, make it difficult to capture plasticity in authentic learning contexts. Third, reflective mechanisms will vary across domains, requiring adaptation for fields as diverse as science education,

professional training, and neurorehabilitation. Finally, learner variability in metacognition, motivation, and neurodiversity highlights the importance of adaptive scaffolds to ensure inclusivity.

Despite these challenges, the framework offers actionable insights for practice. It encourages the design of gameplay experiences that combine sensory richness and meaningful challenge to promote both engagement and neural adaptability. Reflective scaffolds, such as prompts, comparative models, and feedback loops, should be integrated to strengthen metacognition and cognitive flexibility. Iterative reapplication of skills across varied contexts can reinforce consolidation and transfer, while adaptive tools can accommodate individual learner differences.

Together, these implications position NRGD as a blueprint for designing digital games that are not only pedagogically effective but also biologically grounded, thus offering new directions for educational innovation and interdisciplinary research.

4. Conclusion and Future Work

Despite these challenges, the framework offers actionable insights for practice. It encourages the design of gameplay experiences that combine sensory richness and meaningful challenge to promote both engagement and neural adaptability. Reflective scaffolds, such as prompts, comparative models, and feedback loops, should be integrated to strengthen metacognition and cognitive flexibility. Iterative reapplication of skills across varied contexts can reinforce consolidation and transfer, while adaptive tools can accommodate individual learner differences.

This paper introduced the NRGD framework, which extends RGD by explicitly linking reflective practices in digital games to mechanisms of neuroplasticity. By bridging neuroscience, reflection research, and game-based learning, NRGD responds to persistent disconnections between these fields and proposes reflection not only as a pedagogical tool but also as a potential driver of adaptive neural change.

The framework is structured around four cyclical phases: Gameplay, Assessing Conceptualisation, Level-Up, and Reflective Feedback. Each one is mapped to cognitive functions and neuroplastic mechanisms such as long-term potentiation, synaptogenesis, and error-driven adaptive rewiring. A music theory case illustrated how these principles can be translated into practice, supported by a summary table aligning phases, mechanisms, and design strategies. Together, these contributions provide a theoretical foundation for designing digital games that intentionally engage neuroplastic processes while deepening learning outcomes.

In addressing its guiding questions, the study (RQ1) extended RGD into the neurocognitive domain through the NRGD framework, (RQ2) mapped reflective practices to specific neural and cognitive mechanisms, and (RQ3) proposed design principles to guide educators, game designers, and neuroscientists.

Future work should empirically test and refine the framework through interdisciplinary research. Mixed method approaches that combine behavioural measures with neuroimaging could offer evidence for the hypothesised neural effects of reflective gameplay. Applications across education, professional training, and rehabilitation will also be important for exploring domain-specific adaptations. Finally, studies should examine how individual differences, such as metacognitive ability, motivation, and neurodiversity, influence the effectiveness of NRGD-informed interventions. By pursuing these directions, future research can validate and extend the framework so as to move toward digital games that not only teach but also harness the brain's capacity for adaptive change.

Ethical/AI Declaration: There is no AI tool is used in the content creation; however, Apple intelligence writing tool was used in some sentences to improve readability. All figures in the documents are referenced, and diagrams are created in draw.io online tool.

References

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. *Proceedings of the National Academy of Sciences*, 108(18), 7641-7646.

Bruer, J. T. (1997). Education and the brain: A bridge too far. *Educational Researcher*, 26(8), 4–16. https://doi.org/10.3102/0013189X026008004

Carrillo-Mora, P., Alcantar-Shramm, J. M., Almaguer-Benavides, K. M., Macías-Gallardo, J. J., Fuentes-Bello, A., & Rodríguez-Barragán, M. A. (2017). Pharmacological Stimulation of Neuronal Plasticity in Acquired Brain Injury. *Clin Neuropharmacol*, 40(3), 131-139. https://doi.org/10.1097/wnf.0000000000000217

- Chen, S. H. A., & Goodwill, A. M. (2022). Neuroplasticity and Adult Learning. In R. Berisha et al. (Eds.), Third International Handbook of Lifelong Learning (pp. 1–19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-67930-9 43-1
- Clark, I. (2016). Genre, Identity, and the Brain: Insights from Neuropsychology. Journal of General Education, 65(1), 1–19. https://doi.org/10.5325/jgeneeduc.65.1.1
- Costandi, M. (2016). Neuroplasticity. MIT Press.
- Davis, M. (1997). Neurobiology of fear responses: the role of the amygdala. *J Neuropsychiatry Clin Neurosci*, *9*(3), 382-402. https://doi.org/10.1176/inp.9.3.382
- Dewey, J. (1933). How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process. D.C. Heath & Co Publishers.
- Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: changes in grey matter induced by training. *Nature*, 427(6972), 311-312. https://doi.org/10.1038/427311a
- Edwards, S. L., Gantwerker, E., Cosimini, M., Christy, A. L., Kaur, A. W., Helms, A. K., Stiver, M. L., & London, Z. (2023). Game-based learning in neuroscience: key terminology, literature survey, and how to guide to create a serious game. *Neurology® Education*, 2(4), e200103.
- Epic Games. (2017). Fortnite [Video game]. Epic Games.
- Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *367*(1594), 1338-1349. https://doi.org/10.1098/rstb.2011.0417
- Gee, J. P. (2003). What video games have to teach us about learning and literacy. Palgrave Macmillan. https://doi.org/10.5040/9781350933684
- George, A. S., George, A. H., & Baskar, T. (2023). Neuro-Gaming: How Video Games Shape the Brain's Cognitive Landscape. Partners Universal International Research Journal, 2(4), 128-137.
- Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. *Neurosci Biobehav Rev*, *37*(9 Pt B), 2243-2257. https://doi.org/10.1016/j.neubiorev.2013.04.005
- Howard-Jones, P. A. (2014). Neuroscience and education: Myths and messages. *Nature Reviews Neuroscience, 15*(12), 817-824. https://doi.org/10.1038/nrn3817
- Immordino-Yang, M. H., & Damasio, A. (2007). We Feel, Therefore We Learn: The Relevance of Affective and Social Neuroscience to Education. *Mind, Brain, and Education*, 1(1), 3-10. https://doi.org/10.1111/j.1751-228X.2007.00004.x
- Innocenti, G. M. (2022). Chapter 1 Defining neuroplasticity. In A. Quartarone, M. F. Ghilardi, & F. Boller (Eds.), *Handbook of Clinical Neurology* (Vol. 184, pp. 3-18). Elsevier. https://doi.org/10.1016/B978-0-12-819410-2.00001-1
- Johnston, M. V. (2009). Plasticity in the developing brain: implications for rehabilitation. *Dev Disabil Res Rev*, 15(2), 94-101. https://doi.org/10.1002/ddrr.64
- Khaled, R. (2018). Questions Over Answers: Reflective Game Design. In D. Cermak-Sassenrath (Ed.), *Playful Disruption of Digital Media* (pp. 3-27). Springer Singapore. https://doi.org/10.1007/978-981-10-1891-6 1
- Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. *J Speech Lang Hear Res*, *51*(1), S225-239. https://doi.org/10.1044/1092-4388(2008/018)
- Kolb, B., & Gibb, R. (1999). Neuroplasticity and recovery of function after brain injury. Cognitive neurorehabilitation, 9-25.
- Kolb, B., & Gibb, R. (2008). Principles of neuroplasticity and behavior. In D. T. Stuss, G. Winocur, & I. H. Robertson (Eds.), Cognitive Neurorehabilitation: Evidence and Application (2 ed., pp. 6-21). Cambridge University Press. https://doi.org/10.1017/CBO9781316529898.003
- Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annu Rev Psychol, 49, 43-64. https://doi.org/10.1146/annurev.psych.49.1.43
- Kolb, D. (1984). Experiential Learning: Experience As The Source Of Learning And Development (Vol. 1).
- Lin, X., Hmelo, C., Kinzer, C. K., & Secules, T. J. (1999). Designing technology to support reflection. *Educational Technology Research and Development*, 47(3), 43-62. https://doi.org/10.1007/BF02299633
- Løvstad, M., Funderud, I., Meling, T., Krämer, U. M., Voytek, B., Due-Tønnessen, P., Endestad, T., Lindgren, M., Knight, R. T., & Solbakk, A. K. (2012). Anterior cingulate cortex and cognitive control: neuropsychological and electrophysiological findings in two patients with lesions to dorsomedial prefrontal cortex. *Brain Cogn*, 80(2), 237-249. https://doi.org/10.1016/j.bandc.2012.07.008
- Lynch, M. A. (2004). Long-term potentiation and memory. *Physiol Rev, 84*(1), 87-136. https://doi.org/10.1152/physrev.00014.2003
- Maier, M., Ballester, B. R., & Verschure, P. (2019). Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci, 13, 74. https://doi.org/10.3389/fnsys.2019.00074
- Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2019). The Impact of Studying Brain Plasticity. *Front Cell Neurosci, 13,* 66. https://doi.org/10.3389/fncel.2019.00066
- Mezirow, J. (1991). Transformative dimensions of adult learning. Jossey-Bass.
- Mezirow, J. (1994). Understanding Transformation Theory. In *Adult Education Quarterly* (Vol. 44, pp. 222-232): SAGE Publications Inc.
- Mishra, J., & Gazzaley, A. (2014). Harnessing the neuroplastic potential of the human brain & the future of cognitive rehabilitation. In (Vol. 8, pp. 218): Frontiers Media SA.
- Puderbaugh, M., & Emmady, P. D. (2023). Neuroplasticity. In *StatPearls [Internet]*. StatPearls Publishing.
- Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Routledge.

- Shaheen, A., & Fotaris, P. (2024a). *Applying Reflective Game Design Frameworks (RGD) through the Lens of Design Thinking in Developing Serious Game*. Proceedings of the 2024 5th International Conference on Education Development and Studies, Cambridge, UK. https://doi.org/10.1145/3669947.3669959
- Shaheen, A., & Fotaris, P. (2024b). Enhancing Digital Game-Based Learning Through Reflective Game Design (RGD).

 Proceedings of the 18th European Conference on Games Based Learning (ECGBL 2024), 3-4 October 2024, Aarhus, Denmark.
- Shaheen, A., Halvorsen, F., & Fotaris, P. (2022). *A Reflective Game Design Framework for Game-Based Learning*.

 Proceedings of the 16th European Conference on Games Based Learning (ECGBL 2022), 6-7 October 2022, Lisbon, Portugal, pp. 758-765.
- Squire, K. (2011). Video Games and Learning: Teaching and Participatory Culture in the Digital Age.
- Villareale, J., Biemer, C. F., El-Nasr, M. S., & Zhu, J. (2020). *Reflection in Game-Based Learning: A Survey of Programming Games*. Proceedings of the 15th International Conference on the Foundations of Digital Games, Bugibba, Malta. https://doi.org/10.1145/3402942.3403011
- Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. *Nat Neurosci*, *15*(4), 528-536. https://doi.org/10.1038/nn.3045
- Zeiidner, M., Matthews, G., & Roberts, R. D. (2009). What we know about emotional intelligence: How it affects learning, work, relationships, and our mental health. MIT Press. https://doi.org/10.7551/mitpress/7404.001.0001
- Zimmerman, B. J. (2013). From cognitive modeling to self-regulation: A social cognitive career path. *Educational psychologist*, 48(3), 135-147.