Knowledge Transfer Through Digital Education Technologies in Higher Education

Maria Jose Sousa¹, Luciana Aparecida Barbieri da Rosa², Carolina Martins Rodrigues³, Waleska Yone Yamakawa Zavatti Campos⁴ and Joanna Martinho Costa⁵
¹Instituto Universitário de Lisboa and Research Center for Tourism, Sustainability and Well-being, Universidade do Algarve, Portugal
²UAB/IFRO, Brazil
³Research Center for Tourism, Sustainability and Well-being, Universidade do Algarve, Portugal
⁴PUC, Brazil
⁵ISCTE, Portugal
maria.jose.sousa@iscte-iul.pt

Abstract: Education is essential for the development of skills and talents that enable people to be productive citizens and active members of society. Traditional modes of education, on the other hand, are no longer enough to fulfill society's complex expectations, as people frequently change occupations, seek new educational possibilities, and struggle to manage life, work, and compete for educational demands (Houlden & Veletsians, 2019). The study's challenge derives from the foregoing: "What Information and Communication Technologies (ICTs) can be used in higher education to foster the learning-teaching process?" As a result of the findings of a literature study, it is now possible to identify information and communication technologies (ITCs) that may be employed in higher education to enhance the learning and teaching process.

Keywords: Knowledge Transfer, Digital Learning, Technologies, Higher Education

1. Introduction

Education plays a critical role in developing skills and abilities that enable individuals to become productive citizens and engaged members of society. Traditional forms of education, on the other hand, are no longer sufficient to meet the complicated demands of society, because individuals often change careers, seek other educational opportunities, and try to balance life, work, and conflicting educational demands (Houlden & Veletsians, 2019)

Thus, higher education has become increasingly important in today's world for scientific, social, and technological development (Morosini, 2014; Huang et al., 2020). However, with globalization and internationalization, universities must develop strategies aimed at improving their students (Cunha, 2014; Stevenson, 2010; Hedberg, 2017).

The use of Information and Communication Technologies (ITTs) has been directly impacting society. Thus, new global aspects emerge aiming at the engagement of individuals in a democratic way. Thus, digital technologies have become the main objective of educational policies in the European Union and are one of the main priorities of the 2020 Agenda (Gachago; Livingston, Livingston, 2010 Ivala, 2016).

The evolution of E-Learning over time represents the increasing integration of technology into the learning process to improve learning progress in light of the fourth industrial revolution 4.0 (Halili and Sulaiman, 2021).

In addition, they have played an important role in supporting the learning processes of classroom teaching and Ead of students in Higher Education (ES), based on active and autonomous learning processes of students developing primary skills for learning.

Amorim (2018) adds that these new perspectives for teaching will help in aspects beyond the classroom, that is, for living in society. However, "remote emergency teaching", which evolved in the strange environment of the pandemic, is not the same as E-Learning (Nuez-Canal & de Obesso, 2021).

In general, HEIs have invested in ITCs, in addition to having online services for students and teachers. Thus, several movements of technological inclusion are being seen in the didactic-pedagogical scenario. As a result, it
is becoming increasingly important for institutions to take proactive measures to promote the mental health of their students, such as hiring tutors to provide professional care (Sahu, 2020).

Based on the above, the problem of the study emerges: "What Information and Communication Technologies (ICTs) can be used in higher education to foster the learning-teaching process? Thus, the study aims to present information and communication technologies (ITCs) that can be used in higher education to foster the learning-teaching process. For a better understanding of the article, it is presented its roadmap, which begins with the literature review, followed by methodology, results, and conclusions.

2. Literature Review

2.1 Higher education institutions challenges
Digital technologies applied to education have transformed the learning process at all levels, with emphasis on higher education, which has experienced the modification of a traditional teaching structure to a dynamic digital environment mediated by information technologies (Castro, 2019; Nikou & Aavakare, 2021).

Higher education institutions are facing challenges related to digital education, such as the dispersal of knowledge on the web, massification, greater diversity of student learning styles, and decreased public funding (Arnold & Sangrà, 2018). Thus, there is a need to maximize school benefits and performance, while mechanisms are employed to foster student motivation and satisfaction (Nikou & Aavakare, 2021). The connection of a traditional classroom to virtual reality can be established through Open Educational Resources (OER) and are characterized as free open source educational tools from which it is possible to meet the personalized needs of users (Tang, 2021). Studies show that OERs can lower educational costs (Spector, Merrill, Elen, & Bishop, 2014) while they can favor the performance and learning of college students (Hilton, Gaudet, Clark, Robinson, & Wiley, 2013).

2.2 Technologies Applied to the Educational Field
The pandemic of Covid-19 has brought numerous challenges to maintaining the quality of higher education (Reis, Favretto, Favretto, Favretto, & Santos, 2022; Taglietti, Landri, & Grimaldi, 2021). Among these challenges, emerges the transition from teaching carried out on campus to technology-mediated learning, focusing on online education (Tang, 2021). The main technologies applied to the educational field involve interactive whiteboards, tools, and virtual learning environments such as Moodle, video conferencing, applications and software, games, tablets, and smartphones (Nikou & Aavakare, 2021).

2.3 Digital educational technology
Digital educational technology (TED) is a computer-based technology created or used in formal and informal teaching and learning activities (Castro, 2019). In this sense, e-learning was the predominant approach to distance education due to the use of information and communication technologies to improve learning and access to educational resources (Hamidi & Chavoshi, 2018). However, currently, e-learning has been replaced by what is called m-learning, or mobile learning. M-learning is an approach that differs from e-learning due to the intensive use of mobile systems, such as mobile phones and tablets, which become the main mechanism for access to educational information, including in higher education (Hamidi & Chavoshi, 2018; Sophonhiranrak, 2021).

2.4 M-learning
In m-learning, knowledge transfer is facilitated by connectivity between students (Hamidi & Chavoshi, 2018), so mobile devices allow immediate access to information, sanitation of doubts, access to podcasts and tutorials, videos and audio, educational games, e-books, document writing, participation in synchronous or asynchronous videoconferencing classes and lectures, and interaction in virtual learning environments (Criollo-C, Guerrero-Arias, Jaramillo-Alcázar, & Luján-Mora, 2021). Thus, mobile devices are not only means of access to resources but serve to connect students engaged in educational experiences and activities (Sophonhiranrak, 2021). Thus, mobile technologies allow universities to have flexibility and dynamism for students in the digital age (Criollo-C et al., 2021).

2.5 Hybrid teaching
In addition, there is hybrid teaching (blended learning), characterized by the combination of face-to-face, online and individualized learning, which in turn can accommodate different learning styles, and different individual
needs, from the incorporation of online teaching resources (Lazar, Panisoara, & Panisoara, 2020; Serrano, Dea-Ayuela, Gonzalez-Burgos, Serrano-Gil, & Lalatsa, 2019). The student population of higher education has increasingly diversified, adding to the demand for innovation and the requirement for digital literacy. This scenario fosters the search of students for higher education courses equipped with technological tools capable of preparing them for a dynamic, technological, global, and diversified labor market (Serrano et al., 2019; Smith & Hill, 2019). In addition to these potential benefits, research shows that blended learning is capable of having a greater positive impact on the performance of higher education students when compared to traditional education (Islam, Sarker, & Islam, 2022; Shu & Gu, 2018).

2.6 Developing skills and Sharing Knowledge

The training of competent professionals for the labor market is one of the roles of universities, and the technological environment has affected the way young people are trained and work in organizations (Au-Yong-Oliveira, Gonçalves, Martins, & Branco, 2018). In other words, social networks such as Youtube, Facebook, Instagram, LinkedIn, Google, Twitter, and platforms such as moodle, wiki, zoom, and TED affect the way professionals share information and knowledge, and it is necessary to build technical skills in higher education students (Nikou & Aavakare, 2021). From the acquisition of technological skills, higher education students are more likely to exchange and transfer knowledge for innovation (Al-Kurdi, El-Haddadeh, & Eldabi, 2018; Fischer, Guerrero, Guimón, & Schaeffer, 2021).

The transfer and sharing of knowledge through digital education in higher education are essential professional competencies (Al-Kurdi et al., 2018), which bring the need for sustainable management of resources (Abad-Segura, González-Zamar, Infante-Moro, & García, 2020). In this sense, the educational digitization of higher education is part of the fourth industrial revolution, which can attract more students, improve the experience of education, engender sustainability and facilitate access to teaching materials, among other benefits (Abad-Segura et al., 2020).

2.7 Emotions in digital learning

Discussions about educational technology in higher education need to favor the various learning needs, consider the emotions, feelings, identities, and affections of people (Castañeda & Selwyn, 2018), to highlight the need for social presence (Zou et al., 2021) and cognitive presence (Turula, 2018). In other words, the construction of digital craftsmanship involves digital literacy to confidently use ICTs for work, leisure, and communication (Spante, Hashemi, Lundin, & Algers, 2018).

2.8 Management of digital learning

A proper management of digital learning can facilitate the acceptance of learning technology by users in higher education (Fearnley & Amora, 2020), while allowing to expand the reach of the potentialities of the use of technology for learning (Castañeda & Selwyn, 2018; Hilli & Åkerfeldt, 2020). In this scenario, the role of higher education teachers is fundamental, given that a positive teaching attitude towards learning management systems is capable of increasing the acceptance of technology by users while enriching the teaching and exchange of knowledge among professionals (Fearnley & Blackberry, 2020).

3. Methodology

The methodology used in this research was qualitative in nature, with the exploratory objective to expand the discussions related to THE and ICT. Exploratory research is usually linked to a qualitative approach and its main characteristic is the lack of insufficient hypotheses or hypotheses (Aaker, Kumar & Day, 2004). The authors Bogdan & Biklen (1994) define qualitative methods as the observation and study of several documents that address the theme of research.

Exploratory research according to Gil (2008) aims to develop, clarify and modify concepts and ideas. This type of research is carried out especially when the theme under study is little explored, that is, to discover new ideas, explore alternatives, or diagnose experiences (Zikmund 2000). Scientific articles published in national and international journals were analyzed. Data were analyzed qualitatively using the content analysis technique (Vergara, 2009). For the external validity of the research, we reach a high sample of 133 articles to be analyzed using Microsoft Excel, and this allow generalizable results to populations. Also, the algorithm used for the search of articles were based on the keywords: Digital Higher Education + Technologies + Learning Software.

The articles were separated by software categories presented in the following table (Table 1).
Table 1: Categories of Software for Analysis

<table>
<thead>
<tr>
<th>Categories of Software</th>
<th>Representative Software</th>
<th>Links</th>
</tr>
</thead>
</table>
| **Software for resources producing** | PPT recording software
Screen capture software
The software for video production
The software of original video producing
The software of Multimedia learning resource-producing | PowerPoint and WPS in Windows, Keynote in IOS system
Camtasia Studio, QuickTime, Adobe Premiere
Huawei Course maker App
Mobile phones, CamScanner
Mystic raft, Adobe Captivate |
| **Software for live teaching** | All types of live streaming software, including software on interactive teaching, remote office, online-course | Remote office: ZOOM, TED Conversations
Online course platforms: edX, Coursera, Udacity |
| **Software for asynchronous teaching** | All kinds of online teaching platforms at a national level, regional level, and university community level, as well as those launched by universities and enterprises | Course sharing platform edX, Coursera, Udacity |
| **Software for self-regulated learning** | Learning apps for all subjects | Youtube; Facebook; Instagram; Wikipedia; Linkedin; Google; Websites; Twitter |
| **Software for knowledge construction** | Cognitive tools, collaborative editing tools, virtual simulation tools, etc. | Cognitive tools: mind mapping, GeoGebra
Collaborative editing tools: Knowledge forum, wiki, shimo.im, Tencent Document, Google Docs, Trello VR tools: PhET, Sandboxie, KRPano |
| **Software for learning analytics** | Apps, websites, and interactive class software supporting data analysis | Apps: Smart Partner |
| **Software for practice and evaluation** | All kinds of tools suitable for higher education and basic education | Learning management systems: Moodle, Edmod, Schoolo, TalentLMS
Class management apps: EasiCare, Mentimeter, Typeform
Social software: QQ Group, Wechat Group, Facebook, WhatsApp, Skype, and line |
| **Software for resources and class management** | Apps for learning and class management, mini-programs in Wechat, as well as social software | |

4. Results

According to those premises, different types of tools and platforms were used in an integrated way to support online learning and teaching during the pandemic situation that the world faced since March 2020 and forced the Universities to go online. The analysis done, helped to identify the main technologies utilized for online education, which are summarized and classified into different categories based on their functions in Table 2.

Table 2: Software for knowledge transfer in Digital Education

<table>
<thead>
<tr>
<th>Categories of Software</th>
<th>Representative Software</th>
<th>Links</th>
</tr>
</thead>
</table>
| **Software for producing resources** | PPT recording software
Screen capture software
The software for video production | PowerPoint and WPS in Windows, Keynote in IOS system
Camtasia Studio, QuickTime, Adobe Premiere | PowerPoint:https://products.office.com/zh-cn/powerpoint
keynote:https://www.apple.com/keynote/
Camtasia Studio:https://www.techsmith.com
QuickTime:https://support.apple.com/quicktime
Adobe Premiere:https://www.adobe.com/cn/products/premiere.html |
<p>| The software for video production | Huawei Course maker App | https://coursemaker.org/ |</p>
<table>
<thead>
<tr>
<th>Categories of Software</th>
<th>Representative Software</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>The software of original video producing</td>
<td>Mobile phones, CamScanner</td>
<td>CamScanner:https://www.camscanner.com</td>
</tr>
<tr>
<td>The software of Multimedia learning resource-producing</td>
<td>Mystic raft, Adobe Captivate</td>
<td>Mystic raft: https://en-vr.101.com</td>
</tr>
<tr>
<td>Software for asynchronous teaching</td>
<td>All kinds of online teaching platforms at a national level, regional level, and university community level, as well as those launched by universities and enterprises</td>
<td>EdX https://www.edx.org
Coursera https://www.coursera.org
Udacity https://cn.udacity.com</td>
</tr>
<tr>
<td>Software for self-regulated learning</td>
<td>Youtube; Facebook; Instagram; Wikipedia; Linkedin; Google; Websites; Twitter</td>
<td>WWW. Youtube.com
WWW. Facebook.com</td>
</tr>
<tr>
<td>Software for resources and class management</td>
<td>Apps for learning and class management, mini-programs</td>
<td>Moodle https://moodle.org
Edmodo https://api.edmodo.com
Schoology https://schoology.com</td>
</tr>
</tbody>
</table>
Students used their smartphones to access most of these sorts of software because there was an emergency throughout the world, and many students didn't have PCs or laptops to attend online lessons. In this perspective, the relevance of MLearning (Mobile Learning) (Sungkur, et al, 2016), which is an extension of eLearning, should be discussed.

The use of mobile devices such as phones and tablets in the learning process has led to a rethinking of pedagogical techniques and learning aids, since mobile technology allows students to learn when and when they wish. Mobile learning is based on social constructivism and is student-centered (network learning).

These mobile technologies are a) portable: technology is available whenever the individual needs to learn; b) Individual: technology can be tailored to the individual’s competencies, knowledge, and learning style; c) discrete: the student can capture situations and apply knowledge without the technology becoming overtly visible; d) Available: the individual can use technology anywhere to communicate with other individuals. e) adaptable: technology can be adapted to the context of learning and student’s evolution skills and knowledge; f) persistent: the individual can use technology to manage lifelong learning, resources and knowledge will be immediately accessible, despite changes in technology; g) useful: the technology is adequate to the daily needs of communication, work, and learning; h) easy to use: the technology is easily understood and used by people with no prior experience. Because learning may be done anytime, anywhere, and with maximum portability, mobility, interaction, and connectivity.

Some of the main possible activities are presented in the following table (Table 3):

Table 3: Activities that enhance knowledge transfer and learning in Mobile Learning

<table>
<thead>
<tr>
<th>Switch messages (SMS)</th>
<th>Browse Dictionary</th>
<th>Create and view glossaries</th>
<th>Exchange emails (Mobile Access)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access graphics and images</td>
<td>Quizzes</td>
<td>Listen to audio lessons (Podcasts)</td>
<td>Make and view Videos</td>
</tr>
<tr>
<td>Access curriculum content</td>
<td>Record audio</td>
<td>Take a photo</td>
<td>Play</td>
</tr>
</tbody>
</table>

Categories of Software

<table>
<thead>
<tr>
<th>Representative Software</th>
<th>Links</th>
</tr>
</thead>
</table>
The use of Digital Education practices integrated into teaching-learning, consider several types of activity that potentiates the knowledge sharing among professors – students: students-professors, and students – students.

5. Conclusions

Digital Education offers greater control and autonomy over learning itself and enables learning in context, that is, in the place, time, and conditions that the student judges most appropriate (i.e., through eLearning platforms or even educational games (Sousa & Rocha, 2017). It can help users become more productive by optimizing downtimes with information. Because of the prevalence of mobile devices, time and space constraints are removed, allowing for greater effectiveness and efficiency in teaching and learning. Mobile learning has been viewed as favorable to informal learning, with Web-based information that is easily transferrable to the small screen, such as photos, audio, and video, readily available (Friend & Militello, 2014; Sousa et al., 2017). Mobile learning gadgets, in addition to their portability, mobility, flexibility, and autonomy, provide on-demand capabilities, allowing you to have what you want when you want it and when you have the time. For future research the study of the emergent pedagogies associated to these technologies need to be identified and analyzed. This research has several contributions for practice, namely, the systematization and dissemination of knowledge about educational technologies and software, which allows the academics and researchers to apply them in their classes and research.

Acknowledgements

This paper is financed by National Funds provided by FCT - Foundation for Science and Technology through project UIDB/04020/2020

References

Cunha, Maria Isabel. The quality and teaching of graduation and the complex exercise of proposing indicators: is it possible to obtain advances? Evaluation (Unicamp), v. 19, p. 789-802, 2014.

