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Discussion topic: Market-driven developments: Economic forces driving the industry towards sustainability 

Abstract: Social media can help businesses and society implement sustainable prac�ces (Bodin & Prell (Eds.), 2011). They 
also contribute to excessive resource use in data collec�on and sharing, digital resource use, and energy consump�on (Kamin 
& Paireekreng, 2018). Thus, TikTok's feeds consume 15.81 mAh per minute and emit 2.63 gEqCO2/min in 2021. (Derudder, 
2021). The genera�on that uses this tool most (Burns-Stanning, 2020) is also the most demanding and aware of climate 
change issues (Knight, 2016), even though its prac�ces contribute to the current degrada�on. This hiatus illustrates how 
difficult it is to reconcile individual and collec�ve goals. We propose shi�ing the ques�on from the end-user to the service 
provider by detec�ng sobriety pits in data use and access to perpetuate or avoid disrup�ng end-user prac�ces. Sobriety 
(frugality) is a cri�cal variable in energy transi�on scenarios (Balzani, 2019) and one of the ecological transi�on's pillars. Social 
media and AI are par�cularly tense on these issues (Stein, 2020). Current solu�ons o�en pit energy efficiency against 
performance (Ikhlasse, Benjamin, Vincent & Hicham, 2021). Given the industry's promises of informa�on access, automa�on, 
intelligent decision-making, human error avoidance, and more, this is unacceptable. Thus, we propose an opera�onal 
framework to pose a model of sobriety for data access, consump�on, and use (such as in social media or AI agents training) 
that does not impair performance or accuracy. 

Keywords: Sustainable consump�on, Green AI & ICT, Eco-design & changing business models, accuracy and sustainability, 
ecological sobriety 

1. Introduction 
Social media can support sustainable business and societal prac�ces (Bodin & Prell (Editors), 2011). However, 
they also lead to excessive resource use, such as data collec�ng and exchange, digital resource u�lisa�on, and 
energy consump�on (Kamin & Paireekreng, 2018). In 2021, TikTok feeds will u�lise 15.81 mAh per minute and 
produce 2.63 gEqCO2/min. (Derudder, 2021). Nonetheless, its prac�ces contribute to the current crisis. This 
demonstrates how challenging it is to reconcile individual and community objec�ves. 

Service providers can con�nue or avoid interrup�ng end-user prac�ces by iden�fying sobriety pools (s-pools) in 
data use and access. 

Sobriety (frugality) is a cri�cal characteris�c in energy transi�on scenarios (Balzani, 2019) and one of the 
cornerstones of the ecological transi�on. Exis�ng systems frequently pit energy economy versus performance 
(Ikhlasse, Benjamin, Vincent & Hicham, 2021). This is unacceptable, given the industry's promises to improve 
informa�on access, automa�on, intelligent decision-making, and avoiding human mistakes. The situa�on is very 
tense regarding social media and AI (Stein, 2020). 

Hence, we propose an opera�onal framework to present a model of sobriety about data access, intake, and 
u�lisa�on (whether for direct use, such as in social media or agents training in AI) that does not compromise 
performance or precision. 

Accuracy—sa�sfac�on as a response to an expecta�on or need—is the key to data consump�on processes and 
AI systems (Giese & Cote, 2000). Sa�sfac�on is achieved when the process produces enough output to answer 
the ques�on without a sta�s�cally significant error. A "sa�sfac�on func�on" meets this impera�ve. This makes 
modelling sobriety difficult. As a result, sa�sfac�on is directly related to system produc�on, a func�on of resource 
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alloca�on, which we have mapped using ac�vity best cos�ng (ABC) tools (Ray & Gupta,1992). This mapping 
helped us iden�fy the drivers of ar�ficial intelligence ac�vity and test how their varia�on affected accuracy, the 
expected deliverable. The ABC approach shows that task and resource alloca�on both affect sa�sfac�on, but 
interdependencies and constraints require further analysis. We tested drivers' dependencies, showing that 
energy consump�on was a func�on of the algorithm and the volume of data used to train the learning system. 
By stressing interlinkages and tensions, we found that op�mal accuracy was achieved when data consump�on 
reached 68% and that further data processing did not increase precision. 

Thus, the sa�sfac�on approach allows us to iden�fy sobriety pools and reduce data consump�on by 32% by 
analysing drivers and resource interdependencies without changing the process. Thus, such systems have 32% 
sobriety poten�al. This analy�cal approach, which analyses homogeneous ac�vity drivers, should be portable 
beyond the proof of concept (Thomas & Gervais, 2010). 

Sobriety pits are wasted parts of a produc�on process. Consuming a complementary resource has no marginal 
u�lity because it contributes litle to the process. A�er conceptualising these pits, stakeholders must redesign 
and streamline their industrial processes to eliminate resource waste. This vision aims to iden�fy (1) whether 
social networks have sobriety pits and (2) how to iden�fy them (and poten�ally put them into prac�ce). 

 
Figure 1: The sustainable social media challenge 

2. Framework 

2.1 The Social Media Sobriety Challenge. 

This work describes our theore�cal framework. Finding sobriety pits requires a deep understanding of the 
produc�on process (Figure 1). 

Why do we produce this way? Why this method? If there is no clear opera�onal and, most importantly, quan�fied 
answer to this ques�on—we produce this way because it improves the produc�vity of x; for example—sobriety 
pits may be detected at this point in the produc�on cycle. Thus, business rou�nisa�on may be hindering cycle 
produc�vity, so it may be wise to reassess it (Gibson, 2003). 
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2.2 Linking production processes, costs, and end-user satisfaction. 

 

Figure 2: Process – End-Users Rela�onship 

First, we analyse each produc�on cycle's components and subcomponents. Processes are the sum of produc�ve 
chains. We use requirement engineering to link (Figure 2) end-user expecta�ons with process reality (Cheng & 
Atlee, 2009). Repertory grids can be used (Sadiq, M., & Jain, 2012). We assume that f(x) and g(x) are parametric 
grid func�ons for produc�on and observa�on variables, respec�vely. 

All necessary produc�on and service processes are formulated in the parametric grid. Produc�on grid situa�ons 
are observed. Measurements between grids reveal pit poten�als. 

The ABC (ac�vi�es best cos�ng) method breaks down ac�vi�es into cost drivers to determine their financial and 
opera�onal existence. Ac�vi�es are processes, and sub-processes are cost drivers (Tsai, 1996). The processes 
exist if the expenses do, but if they do not, there is a loss and a sobriety pit. 

Well-known calcula�on theorems es�mate the area between two curves and between the curve of an odd or 
even func�on and the x-axis (Armate, 2010) 

As a reminder, though this might appear trivial, for two func�ons, 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), where 𝑓𝑓(𝑥𝑥)⩾𝑔𝑔(𝑥𝑥) on the interval 
[𝑎𝑎; 𝑏𝑏], the area bounded by the two curves of equa�ons 𝑦𝑦=𝑓𝑓(𝑥𝑥) and 𝑦𝑦=𝑔𝑔(𝑥𝑥), and the two ver�cal lines of 
equa�ons =𝑎𝑎 and 𝑥𝑥=𝑏𝑏, is given by: ∫ �𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)�𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎  

Whereas if 𝑓𝑓(𝑥𝑥) is an odd function, i.e., such that 𝑓𝑓(-𝑥𝑥) =-𝑓𝑓(𝑥𝑥),then the area bounded by the curve of 𝑓𝑓(𝑥𝑥) and 
the 𝑥𝑥-axis in an interval [-𝑎𝑎;𝑎𝑎] is twice the area between the curve of 𝑓𝑓(𝑥𝑥) and the 𝑥𝑥-axis in the interval [0;𝑎𝑎].More 
precisely,∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 2∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑎𝑎

0
𝑎𝑎
−𝑎𝑎  . The same is true for an even 𝑔𝑔(𝑥𝑥) function, i.e. such that 𝑔𝑔(-𝑥𝑥) =𝑔𝑔(𝑥𝑥). We 

have: ∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 = 2∫ 𝑔𝑔(𝑥𝑥)𝑎𝑎
0

𝑎𝑎
−𝑎𝑎 𝑑𝑑𝑑𝑑 

For the current analysis, elements where the f(x) curve is above the g(x) curve have a posi�ve algebraic area but 
involve ideal, i.e., too much use of resources compared to end-user expecta�ons, and inversely, when it is below, 
the algebraic area is nega�ve, indica�ng a non-op�mal process. 

2.3 Explaining satisfaction. 

But what about user sa�sfac�on? Economic theory offers three answers: u�lity, in a cardinal or ordinal reading, 
or the "choices" theory, which emphasises purchase decisions over sa�sfac�on (Matei, 2000). However, these 
three theore�cal frameworks assume end-users express sa�sfac�on by arbitra�ng a price/quan�ty trade-off 
(Chiappori, 1990), which is par�ally observed but not a unique decision point. Product innova�on may increase 
appe�te, which is more important than sa�sfac�on. 
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Consumer sa�sfac�on is called u�lity. Marginal u�lity measures the u�lity change from a one-unit change in 
consump�on/use of a good/service. Such economists (Hugon, 2004) value marginal u�lity (the scarcity of a 
good). The u�lity func�on is subject to market biases because scarcity can be ar�ficially induced, such as 
stockpiling mustard seeds in winter 2022 to ar�ficially raise prices (Cuissard, 2023). This neoclassical reading links 
value to the u�lity of the last unit exchanged. Gossen's first law (Jolink & Van Daal, 1998) states that consumer 
desire decreases with each unit consumed. Thus, each subsequent unit has less u�lity. Marginal u�lity (first 
consumed unit) > Marginal u�lity (second consumed unit) > Marginal u�lity of n consumed units. 

The total u�lity func�on shows how the consumer feels when using x units of good X and y units of good Y. The 
total u�lity of goods X and Y is U(x; y). Marginal u�lity is the u�lity of consuming another good. This is standard. 
Um(x)=U/x, where U is u�lity varia�on and x is good/service varia�on. Only marginal u�lity determines price. 
Pareto and Slutsky (Katzner, 2014) believed u�lity quan�fica�on is more complicated than par ordinal theorists 
thought. They proposed measuring u�lity by end-user importance rather than numbers. Substan�al ra�onality 
underpins this theory. Substan�ve ra�onality means people seek maximum sa�sfac�on with minimum resources 
(at the lowest possible price). This is known as the Ordinal approach. 

Both theories assume the consumer is ra�onal and seeks maximum sa�sfac�on or u�lity. Thus, consumers can 
use a precise quan�ta�ve index to measure their u�lity from consuming a good/service. This approach is 
supposed to represent the preferences of economic agents between several op�ons (baskets of goods/services, 
financial por�olios) over a poten�ally infinite period, where they all have the same informa�on, all derive 
sa�sfac�on from their consump�on (or use, we speak of posi�ve u�lity), are limited in their purchasing capacity 
(they cannot borrow), and allocate all of their money to realising this u�lity (arbitrage, e.g. investment, 
distribu�on). These assump�ons rarely hold true. This reading atempts to answer the ques�on: how does an 
economic agent allocate their budget between goods and services? 

Aware of the shortcomings of this approach, economic theory has atempted to develop a "new theory of the 
consumer" (Barnet, 2003) that emphasises the existence of a consump�on process similar to the produc�on 
process, allowing the consumer/end-user to act with the goal of achieving explicit ends rather than in an 
impulsive/irra�onal way whose role is limited to "consuming" goods to sa�sfy his needs. This view makes 
household behaviours tangible and objec�ve. However, it has obscured a second novel aspect of the new theory, 
which is to provide a framework for studying subjec�ve choice forma�on. This vision is absent from the 
tradi�onal theory of u�lity, but it is essen�al if the consumer must determine his ends and seek informa�on to 
arbitrate choices (Fus�er & Rouget, 1979). 

Arbitrage is hence crucial because it drives consumer choice. If two products perform the same func�on, 
consumers do not care which one they buy. As long as the services are the same, the later will accept both a 
wasteful and an environmentally harmful product. This is the indifference func�on. 

Demonstra�ng a product/iden�ty service's and func�onality can increase end-user acceptance of one choice 
over another (de Lima Salem & Picot-Coupey, 2020). To maintain sa�sfac�on if the service supports it. Users are 
commited to sa�sfac�on, not products (Dufer & Moulins, 1989). 

Thus, regardless of approach, trade-offs revolve around goods/services availability and price as an atribu�on of 
value, all within a volumetric logic (a price corresponds to a given quan�ty). The Maslovian logic of moving from 
one state of societal achievement to another and from one product/service life cycle to another never addresses 
consumer sa�sfac�on but the ability to produce more a�er buying a product/service. 

Our AI work (Gans-Combe, Jun Kim, Mouhali tbp 2023) and social media tes�ng have this meaning. We found 
the source of economic agent sa�sfac�on. It comes from transi�oning from level x to level y in product access 
through integrated func�ons. I want to train a fruit recogni�on algorithm. Only 68% of my database images were 
used to train the algorithm, but it correctly iden�fies fruits. My algorithm training requires 68% of the resources. 
End-user sa�sfac�on is not improved by using more resources. I can deploy this algorithm without consuming 
resources, as noted ~C. (or non-C). Contrary to theory, u�lity can be nega�ve. Thus, a sobriety func�on generates 
end-user sa�sfac�on from non-consump�on. Thus, sa�sfac�on (S) is linked to accessibility (supply chain or a) 
and product life cycle (existence or e). 𝑆𝑆 = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑒𝑒). We also know that any product/process service (P) 

depends on these two func�ons at the right �me (t). 𝑃𝑃 = 𝑓𝑓(𝑎𝑎)+𝑓𝑓(𝑒𝑒)
𝑡𝑡

  and S=P/t.  
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Thus, end-user sa�sfac�on depends on economic agents' ability to implement processes that meet my needs. 
Each element of f(a) and f(e) can be broken down into ac�vi�es, drivers, resources, and costs through “Ac�vity 
best cos�ng” applied to produc�on (Chea, 2011). We also know we don't need to use all resources to reach a 
sa�sfac�on level that allows end-users to con�nue produc�on/usage. 

Thus, S and P converge, meet, and diverge at a limit. How do I determine my non-consump�on point (my 
op�mum trade-off between sa�sfac�on and efficiency) and decide which variable to sa�sfy? Safety, deployment 
simplicity, and (Kitchenham & Pfleeger, 1996). or price trade-off. Three func�ons converge un�l the decision 
point, then diverge. 

Adequacy models as arbitrage tools are widely used in AI, but are they applicable to social network architectures? 

3. Social media sobriety pits 
Social media have a complex sobriety pool detec�on profile. Their architectures and produc�ve cycles are 
fragmented and not fully dematerialised (Bosseta, 2018). The diversity of services these structures offer—
messaging, video, search, affinity or relevance networking—consume fluids, but not exclusively. 

3.1  Complex architectures, but shared resources needs. 

 

Figure 3: Resource needs per social networks transac�on types 

Indeed, without the physical media that enable their distribu�on—smartphones, computers, etc.—none of these 
tools or offers would exist (networks, servers, but also algorithmic capaci�es, etc.). Despite their energy needs, 
these offers incrementally consume rare earth, human resources, and programma�c skills (see Figure 3 - resource 
needs per social networks transac�on types). 
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Figure 4: Social media resources needs cycle 

However, resource analysis shows a homogeneity of goods and services needed to build, implement, and deploy 
this type of service (Figure 4). 

We have a resource-only backend for mul�ple frontends. Resource concentra�on, according to stakeholders, 
differen�ates resource needs. Thus, from the perspec�ve of sobriety and the model to be implemented, 
knowledge of a process associated with business concentra�on ra�os could help iden�fy areas for improvement 
by establishing business resource profiles. 

3.2 Social media and digital "overconsumption" 

This accumula�on of usages (Figure 4) affects resources, their use, and the planet (Kliem & Kao, 2015). "Digital 
over-consump�on" refers to a connected device's life cycle's environmental impact. From manufacturing to 
disposal, a device emits CO2, creates waste, and degrades biodiversity. Every end-user ac�on—using an app, 
sending an email, or watching a video—impacts the environment. Three factors affect this. 

3.2.1 Digital device production. 

Connected devices use 79% water and fossil fuels. This process pollutes the earth and accounts for 70% of 
France's digital technology's carbon footprint. Smartphones require global imports of lithium, gold, and metal. 
Transport increases CO2 emissions. Miniaturiza�on may not work because smaller components require more 
energy, rare metals, and chemicals to make (Barney, 1995). 

3.2.2 Communication infrastructure operations 

"Pipes" and social media overconsume content, which must be stored in clouds or data centres. Since they need 
coolants and electricity to run, these massive physical storage centres pollute a lot (Rong, Zhang, Xiao, Li & Hu, 
2016). In 2021, social networks used 30% of global data centre electricity, which was 220-320 TWh or 0.9-1.3% 
of global final electricity demand (IEA, 2022). In 2021, cryptocurrency mining consumed 100-140 TWh: “Over the 
past several years, large data centres have used 10-30% more energy due to rapid workload growth. Data centre 
energy use (excluding crypto) is expected to grow moderately in the coming years, but longer-term trends are 
uncertain. Coolants are another example (including water: Myton, 2021). 
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3.2.3 Equipment’s’ End-of-life. 

A recent study (Magazzino, Mele, Morelli & Schneider, 2021) examined the link between poorly deployed 
informa�on and communica�on technologies and waste ending up in open dumps where some raw materials 
cannot be recycled due to infrastructure or design issues. 

4. Recalculating to find sobriety pits 
According to the global web index (GWI 2022), personal (the primary use) and economic impera�ves drive social 
media use and growth (job search, visibility) ... It is about sharing interes�ng content with friends or strangers 
(Krishen, Berezan, Agarwal & Kachroo, 2016) or showing ac�vism. These social tools are among the most widely 
used (Pearce, Niederer, Özkula, & Sánchez Querubín, 2019).  

Overconsump�on is obvious: 4.33 billion mobile users consume 262 million Tons of EqCO2 per year, accoun�ng 
for 0.61% of global EqCO2 impacts in 2019 and 56% of France's carbon emissions. Addi�onally, superimposing 
social network layers requires addi�onal energy and resources. Thus, TikTok leads with 15.81 mAh/min, followed 
by Facebook (12.36) and Snapchat (11.48). These use 10% of France's annual electricity consump�on. The energy 
efficiency of established pla�orms like LinkedIn, YouTube or Instagram would be interes�ng to inves�gate as they 
use the least energy while being quite client efficient.  

Maintaining the user experience while finding a cri�cal path for improving the links between produc�on layers 
that could lead to sobriety is the challenge. Thus, in�mate knowledge of social network produc�on processes is 
essen�al.  

What makes a social network? Schema�cally this is known, but in detail, this is less evident. In contrast, detec�ng 
areas of sobriety requires this knowledge, the ability to iden�fy in a produc�on process when the resource is 
overused in rela�on to the expected customer experience. 

Therefore, any actor tempted by an approach to make its produc�on prac�ses lean should first ques�on the 
auditors to see if they can do this work. This requires a detailed understanding of each social network's 
produc�ve con�nuum, which breaks down each product/service into ac�vi�es and cost drivers using accoun�ng 
standards guidelines. Without a clear picture of the processes and their costs, it seems compromised to look for 
resource usage savings. 

It is worth repea�ng that the customer experience determines a user's sa�sfac�on with using a social network, 
even to sa�sfy useless needs. According to research, Twiter loses 0.5% of its daily users monthly, directly 
impac�ng customer experience (Stokel-Walker, 2022). 

Thus, even elites use social media for sa�ety and psychological belonging (Bao, Sun, Han, Lin, and Lau, 2023). 
They are also very high on the Maslovian scale (Ghatak and Singh, 2019). Due to overconsump�on and customer 
experience, the social media ecosystem seems like a textbook example of how to find sobriety pits. However, we 
must consider resource stacking. Establishing a model on a horizontal process is different from analysing this 
issue in a chain of N superimposed func�onali�es or N consecu�ve processes. N is 6. 

We previously demonstrated that sobriety lies in op�mising a process while sa�sfying the end user. At least six 
simultaneous processes sa�sfy social media users. Therefore, it is necessary to iden�fy the points of convergence 
of these processes to express them in a way that makes the search for sobriety wells possible in a con�nuous 
manner (in a single approach) rather than subsequently, which would make the analysis tedious. Restate: 𝑆𝑆 =
𝑃𝑃/𝑡𝑡 with:  𝑃𝑃 = 𝑓𝑓(𝑎𝑎)+𝑓𝑓(𝑒𝑒)

𝑡𝑡
 .This expresses social media sa�sfac�on. 𝑆𝑆 = ∑ 𝑃𝑃𝑖𝑖

𝑡𝑡
5
𝑖𝑖=0  

P2's resource knowledge is limited to what is not in P1 and later. If the usage structure of the previous 
resource phase is known, only the unknown elements need to be explored, greatly reducing the work. 
The resources are used concurrently in phase t. 

So:  𝑃𝑃 = 𝑓𝑓(𝑎𝑎)+𝑓𝑓(𝑒𝑒)
𝑡𝑡

 

𝑃𝑃1 =
(𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑎𝑎1)) + (𝑓𝑓(𝑒𝑒) + 𝑓𝑓(𝑒𝑒1)

𝑡𝑡
=  
𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑒𝑒)

𝑡𝑡
+
𝑓𝑓(𝑎𝑎1) + 𝑓𝑓(𝑒𝑒1)

𝑡𝑡
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(….) 

𝑃𝑃6 = 6
𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑒𝑒)

𝑡𝑡
+ 5

𝑓𝑓(𝑎𝑎1) + 𝑓𝑓(𝑒𝑒1)
𝑡𝑡

+ 4
𝑓𝑓(𝑎𝑎2) + 𝑓𝑓(𝑒𝑒2)

𝑡𝑡
+ 3

𝑓𝑓(𝑎𝑎3) + 𝑓𝑓(𝑒𝑒3)
𝑡𝑡

+ 2
𝑓𝑓(𝑎𝑎4) + 𝑓𝑓(𝑒𝑒4)

𝑡𝑡

+
𝑓𝑓(𝑎𝑎5) + 𝑓𝑓(𝑒𝑒5)

𝑡𝑡
 

𝑃𝑃6 = 6𝑃𝑃 +  5
𝑓𝑓(𝑎𝑎1) + 𝑓𝑓(𝑒𝑒1)

𝑡𝑡
+ 4

𝑓𝑓(𝑎𝑎2) + 𝑓𝑓(𝑒𝑒2)
𝑡𝑡

+ 3
𝑓𝑓(𝑎𝑎3) + 𝑓𝑓(𝑒𝑒3)

𝑡𝑡
+ 2

𝑓𝑓(𝑎𝑎4) + 𝑓𝑓(𝑒𝑒4)
𝑡𝑡

+
𝑓𝑓(𝑎𝑎5) + 𝑓𝑓(𝑒𝑒5)

𝑡𝑡
 

This shows that social media users' needs and resources are redundant. Finding and discarding these 
unnecessary items may lead to sobriety pits. 

5. Deploying the model: a ten components example. 
Suppose a network consists of n components, each of which corresponds to a given use of resources (monetary 
or otherwise). Let the marginal u�lity (μ) of each component be given by: 

μ1 = 𝑥𝑥 − 𝑦𝑦 × 𝑄𝑄1 
μ2 = 𝑥𝑥 − 𝑦𝑦 × 𝑄𝑄2 
... 
μ𝑛𝑛 = 𝑥𝑥 − 𝑦𝑦 × 𝑄𝑄𝑛𝑛 

where x and y are constants and Qi is the quan�ty of component i consumed. Here, x and y are treated as 
constants to simplify the mathema�cal representa�on and analysis of the problem. Constants being fixed values 
that do not change within the context of the problem being analyzed, they are in the present case used to 
represent the underlying factors or characteris�cs of the components in the network that remain consistent 
across all components. If the costs of products i are given by Ci, and the resources (budgetary or else) constraint 
is fixed at R, then, to find the end user equilibrium, we need to set the marginal u�lity per monetary unit (let say 
euros) spent on each component equal to each other and tending to 0. This gives us the following equa�on: 

μ1
𝐶𝐶1

=
μ2
𝐶𝐶2

= ⋯ =
μ𝑛𝑛
𝐶𝐶𝑛𝑛

 

((𝑥𝑥 − (𝑦𝑦 × 𝑄𝑄1 ))
𝐶𝐶1

=
((𝑥𝑥 − (𝑦𝑦 × 𝑄𝑄2 ))

𝐶𝐶2
= ⋯ =

((𝑥𝑥 − (𝑦𝑦 × 𝑄𝑄𝑛𝑛 ))
𝐶𝐶𝑛𝑛

 

Solving for Qi, we get: 

Qi = (𝑥𝑥−(𝐶𝐶𝑖𝑖×μ𝑖𝑖))
𝑦𝑦

     

Subs�tu�ng this expression for Qi into the resources’ constraint: 𝐶𝐶1𝑄𝑄1 + 𝐶𝐶2𝑄𝑄2 + ⋯+ 𝐶𝐶𝑛𝑛𝑄𝑄𝑛𝑛 = 𝑅𝑅 

We get: 

𝐶𝐶1(𝑥𝑥 − (𝐶𝐶1 × 𝜇𝜇1 ))
𝑦𝑦

=
𝐶𝐶2(𝑥𝑥 − (𝐶𝐶2 × 𝜇𝜇2 ))

𝑦𝑦
= ⋯ =

𝐶𝐶𝑛𝑛(𝑥𝑥 − (𝐶𝐶𝑛𝑛 × 𝜇𝜇𝑛𝑛 ))
𝑦𝑦

= 𝑅𝑅 

Now, we can solve for Ci in terms of R. This gives us the resources that will set the marginal u�lity vector to zero: 

𝐶𝐶1 =
((𝑥𝑥 − (𝑦𝑦 × 𝜇𝜇1)) × 𝑅𝑅)

(x ∗  y +  y ∗  𝜇𝜇1  +  y ∗  𝜇𝜇2 + . . . + y ∗  𝜇𝜇𝑛𝑛
 

 

𝐶𝐶2 =
((𝑥𝑥 − (𝑦𝑦 × 𝜇𝜇2)) × 𝑅𝑅)

(x ∗  y +  y ∗  𝜇𝜇1  +  y ∗  𝜇𝜇2 + . . . + y ∗  𝜇𝜇𝑛𝑛
 

... 

𝐶𝐶𝑛𝑛 =
((𝑥𝑥 − (𝑦𝑦 × 𝜇𝜇𝑛𝑛)) × 𝑅𝑅)

(x ∗  y +  y ∗  𝜇𝜇1  +  y ∗  𝜇𝜇2 + . . . + y ∗  𝜇𝜇𝑛𝑛
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Thus, we have demonstrated the pathway to set the marginal u�lity vector to zero in the context of a network 
with n components. In general, the end-user equilibrium condi�on can be used to find the costs that will set the 
marginal u�lity vector to zero for any network with n components. 

As explained before, ABC gives us the precise costs for each component of a network. By comparing the 
calculated marginal u�li�es and the real costs, we can establish the op�mal quan�ty of resources necessary to 
sa�sfy the users, and the distance between the real costs observed and this op�mum. It is in this interval, which 
is repeated for each network, that the wells of sobriety can be found, making it possible to perpetuate user 
sa�sfac�on with the services offered while improving opera�onal margins. 

Let us now assume that there are two produc�on pathways resul�ng in the same service, each composed - for 
the purpose of this example - of ten components. These methodologies ul�mately provide the same service, and 
each pair of components performs the same service: component 1 of set 1 delivers the same service as 
component 1 of set 2. We note that this approach is valid for n elements as men�oned above, but we limit the 
number of components for the purpose of the example. Each service component has its own balanced marginal 
u�lity, i.e., the point where users get what they want for a given resource usage (which can be monetary or 
otherwise). Comprehensive Ac�vity-Based Cos�ng (ABC) matrixes provide for each component used in a digital 
service, on one hand the volume of resource used, and on the other hand the associated costs (Shaffi & Al-
Obaidy, 2013). The process consists of eight essen�al steps. ini�ally pinpoin�ng the primary ac�vi�es within the 
network that contribute to overall costs, such as servers setup, service quality, and more as well as determine 
the cost objects, which are the products or services for which costs will be allocated (Kamiya, 2020). Next, the 
iden�fied ac�vi�es are categorized into cost pools to ascertain a cost driver for each cost pool. A�er calcula�ng 
the total cost of each cost pool by aggrega�ng the associated direct and indirect costs of the ac�vi�es within the 
pool, an ac�vity rate can be derived by dividing the total cost of each cost pool by the total quan�ty of the cost 
driver. 

With this informa�on, a matrix can be formulated wherein rows symbolize cost pools and columns represent 
cost objects. Within each cell, input the product of the ac�vity rate for the corresponding cost pool and the 
quan�ty of the cost driver u�lized by the cost object. Subsequently, for every cost object, the allocated costs 
must be consolidated from all cost pools to derive the total indirect cost for that par�cular object. 

Finally, direct costs must be combined with the allocated indirect costs from the Ac�vity-Based Cos�ng matrix to 
ascertain the total cost for each cost object.  

By comparing the costs and marginal u�li�es of the components in the two produc�on pathways, we can 
determine the most efficient pathway to achieve the desired level of user sa�sfac�on while minimizing resource 
consump�on. This analysis can help organiza�ons op�mize their service offerings, reduce waste, and ul�mately 
improve their botom line. 

 

Figure 5: Marginal u�lity curves and links for two sets of resources components used in a network produc�on 
process.  
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From these elements we calculate (Figure 5):  

(1) the marginal u�lity of each component. This allows us to demonstrate that - for an iden�cal ac�vity - one set 
of components requires significantly more resources than another, the marginal u�li�es for components 5 and 
10 of the second set being above 250 resource units, 

(2) the distance between marginal u�li�es of each set (or couple) of components with a given volume. This 
approach makes it possible to carry out an arbitra�on between components, thus, to test the subsidiarity of the 
components, which is called homogeneity in economics. Having done this, we can extrapolate the op�mal 
component basket to render the desired service, thus highligh�ng both the sobriety wells per component and 
components group.  

We note that in our example, the marginal u�lity holding towards 0 is fast reached, which indicates an important 
propensity of the networks processes to waste resources if not op�mized.   

6. Recommendation as conclusion 
Due to technical layers and different expecta�ons and opera�ons in comparable instruments, streamlining 
industrial methods for resource consump�on efficiency in the social media industry is complex. They combine 
ins�tu�onal and family communica�on, and commercial and personal interests on the same pla�orms. This 
opera�onal confusion results in polymorphous expecta�ons, which serve as a vector for resources over usage. 
In fact, the more numerous and diverse the expecta�ons, the more the associated processes are plagued by the 
same flaws, as demonstrated above. 

Consequently, there are mul�ple sa�sfac�on curves with increasing expecta�ons. The modeller’s response can 
only be matrix-based in this instance. Also, in such a framework, work on harmonising processes and 
expecta�ons appears necessary, mainly because we can observe that the social media pla�orms with the most 
dedicated channels are the ones that have discovered their economic model and are the most environmentally 
responsible (Dunia, Rambe & Fauzi, 2018, March). 
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