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Discussion topic: Market-driven developments: Economic forces driving the industry towards sustainability

Abstract: Social media can help businesses and society implement sustainable practices (Bodin & Prell (Eds.), 2011). They
also contribute to excessive resource use in data collection and sharing, digital resource use, and energy consumption (Kamin
& Paireekreng, 2018). Thus, TikTok's feeds consume 15.81 mAh per minute and emit 2.63 gEqCO2/min in 2021. (Derudder,
2021). The generation that uses this tool most (Burns-Stanning, 2020) is also the most demanding and aware of climate
change issues (Knight, 2016), even though its practices contribute to the current degradation. This hiatus illustrates how
difficult it is to reconcile individual and collective goals. We propose shifting the question from the end-user to the service
provider by detecting sobriety pits in data use and access to perpetuate or avoid disrupting end-user practices. Sobriety
(frugality) is a critical variable in energy transition scenarios (Balzani, 2019) and one of the ecological transition's pillars. Social
media and Al are particularly tense on these issues (Stein, 2020). Current solutions often pit energy efficiency against
performance (lkhlasse, Benjamin, Vincent & Hicham, 2021). Given the industry's promises of information access, automation,
intelligent decision-making, human error avoidance, and more, this is unacceptable. Thus, we propose an operational
framework to pose a model of sobriety for data access, consumption, and use (such as in social media or Al agents training)
that does not impair performance or accuracy.

Keywords: Sustainable consumption, Green Al & ICT, Eco-design & changing business models, accuracy and sustainability,
ecological sobriety

1. Introduction

Social media can support sustainable business and societal practices (Bodin & Prell (Editors), 2011). However,
they also lead to excessive resource use, such as data collecting and exchange, digital resource utilisation, and
energy consumption (Kamin & Paireekreng, 2018). In 2021, TikTok feeds will utilise 15.81 mAh per minute and
produce 2.63 gEqCO2/min. (Derudder, 2021). Nonetheless, its practices contribute to the current crisis. This
demonstrates how challenging it is to reconcile individual and community objectives.

Service providers can continue or avoid interrupting end-user practices by identifying sobriety pools (s-pools) in
data use and access.

Sobriety (frugality) is a critical characteristic in energy transition scenarios (Balzani, 2019) and one of the
cornerstones of the ecological transition. Existing systems frequently pit energy economy versus performance
(Ikhlasse, Benjamin, Vincent & Hicham, 2021). This is unacceptable, given the industry's promises to improve
information access, automation, intelligent decision-making, and avoiding human mistakes. The situation is very
tense regarding social media and Al (Stein, 2020).

Hence, we propose an operational framework to present a model of sobriety about data access, intake, and
utilisation (whether for direct use, such as in social media or agents training in Al) that does not compromise
performance or precision.

Accuracy—satisfaction as a response to an expectation or need—is the key to data consumption processes and
Al systems (Giese & Cote, 2000). Satisfaction is achieved when the process produces enough output to answer
the question without a statistically significant error. A "satisfaction function" meets this imperative. This makes
modelling sobriety difficult. As a result, satisfaction is directly related to system production, a function of resource
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allocation, which we have mapped using activity best costing (ABC) tools (Ray & Gupta,1992). This mapping
helped us identify the drivers of artificial intelligence activity and test how their variation affected accuracy, the
expected deliverable. The ABC approach shows that task and resource allocation both affect satisfaction, but
interdependencies and constraints require further analysis. We tested drivers' dependencies, showing that
energy consumption was a function of the algorithm and the volume of data used to train the learning system.
By stressing interlinkages and tensions, we found that optimal accuracy was achieved when data consumption
reached 68% and that further data processing did not increase precision.

Thus, the satisfaction approach allows us to identify sobriety pools and reduce data consumption by 32% by
analysing drivers and resource interdependencies without changing the process. Thus, such systems have 32%
sobriety potential. This analytical approach, which analyses homogeneous activity drivers, should be portable
beyond the proof of concept (Thomas & Gervais, 2010).

Sobriety pits are wasted parts of a production process. Consuming a complementary resource has no marginal
utility because it contributes little to the process. After conceptualising these pits, stakeholders must redesign
and streamline their industrial processes to eliminate resource waste. This vision aims to identify (1) whether
social networks have sobriety pits and (2) how to identify them (and potentially put them into practice).

Sustainable
Social Media challenge

41 .
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Typical production processes are Social media processes are
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each operation must be In order to satisfy a large
completed or close to number of end users with
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to the next profiles all processes must be

able to run at the same time.

Figure 1: The sustainable social media challenge
2. Framework

2.1 The Social Media Sobriety Challenge.

This work describes our theoretical framework. Finding sobriety pits requires a deep understanding of the
production process (Figure 1).

Why do we produce this way? Why this method? If there is no clear operational and, most importantly, quantified
answer to this question—we produce this way because it improves the productivity of x; for example—sobriety
pits may be detected at this point in the production cycle. Thus, business routinisation may be hindering cycle
productivity, so it may be wise to reassess it (Gibson, 2003).
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2.2 Linking production processes, costs, and end-user satisfaction.
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Figure 2: Process — End-Users Relationship

First, we analyse each production cycle's components and subcomponents. Processes are the sum of productive
chains. We use requirement engineering to link (Figure 2) end-user expectations with process reality (Cheng &
Atlee, 2009). Repertory grids can be used (Sadig, M., & Jain, 2012). We assume that f(x) and g(x) are parametric
grid functions for production and observation variables, respectively.

All necessary production and service processes are formulated in the parametric grid. Production grid situations
are observed. Measurements between grids reveal pit potentials.

The ABC (activities best costing) method breaks down activities into cost drivers to determine their financial and
operational existence. Activities are processes, and sub-processes are cost drivers (Tsai, 1996). The processes
exist if the expenses do, but if they do not, there is a loss and a sobriety pit.

Well-known calculation theorems estimate the area between two curves and between the curve of an odd or
even function and the x-axis (Armatte, 2010)

As a reminder, though this might appear trivial, for two functions, f(x) and g(x), where f(x)>g(x) on the interval
[a; b], the area bounded by the two curves of equations y=f(x) and y=g(x), and the two vertical lines of

equations =a and x=b, is given by: f:(f(x) —g(x))dx

Whereas if f(x) is an odd function, i.e., such that f(-x) =-f(x),then the area bounded by the curve of f(x) and
the x-axis in an interval [-a;a] is twice the area between the curve of f(x) and the x-axis in the interval [0;a].More

precisely,f_aaf(x)dx =2 foaf(x)dx . The same is true for an even g(x) function, i.e. such that g(-x) =g(x). We
have: f_aag(x)dx =2 foag(x) dx

For the current analysis, elements where the f(x) curve is above the g(x) curve have a positive algebraic area but
involve ideal, i.e., too much use of resources compared to end-user expectations, and inversely, when it is below,
the algebraic area is negative, indicating a non-optimal process.

2.3 Explaining satisfaction.

But what about user satisfaction? Economic theory offers three answers: utility, in a cardinal or ordinal reading,
or the "choices" theory, which emphasises purchase decisions over satisfaction (Mattei, 2000). However, these
three theoretical frameworks assume end-users express satisfaction by arbitrating a price/quantity trade-off
(Chiappori, 1990), which is partially observed but not a unique decision point. Product innovation may increase
appetite, which is more important than satisfaction.
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Consumer satisfaction is called utility. Marginal utility measures the utility change from a one-unit change in
consumption/use of a good/service. Such economists (Hugon, 2004) value marginal utility (the scarcity of a
good). The utility function is subject to market biases because scarcity can be artificially induced, such as
stockpiling mustard seeds in winter 2022 to artificially raise prices (Cuissard, 2023). This neoclassical reading links
value to the utility of the last unit exchanged. Gossen's first law (Jolink & Van Daal, 1998) states that consumer
desire decreases with each unit consumed. Thus, each subsequent unit has less utility. Marginal utility (first
consumed unit) > Marginal utility (second consumed unit) > Marginal utility of n consumed units.

The total utility function shows how the consumer feels when using x units of good X and y units of good Y. The
total utility of goods X and Y is U(x; y). Marginal utility is the utility of consuming another good. This is standard.
Um(x)=U/x, where U is utility variation and x is good/service variation. Only marginal utility determines price.
Pareto and Slutsky (Katzner, 2014) believed utility quantification is more complicated than par ordinal theorists
thought. They proposed measuring utility by end-user importance rather than numbers. Substantial rationality
underpins this theory. Substantive rationality means people seek maximum satisfaction with minimum resources
(at the lowest possible price). This is known as the Ordinal approach.

Both theories assume the consumer is rational and seeks maximum satisfaction or utility. Thus, consumers can
use a precise quantitative index to measure their utility from consuming a good/service. This approach is
supposed to represent the preferences of economic agents between several options (baskets of goods/services,
financial portfolios) over a potentially infinite period, where they all have the same information, all derive
satisfaction from their consumption (or use, we speak of positive utility), are limited in their purchasing capacity
(they cannot borrow), and allocate all of their money to realising this utility (arbitrage, e.g. investment,
distribution). These assumptions rarely hold true. This reading attempts to answer the question: how does an
economic agent allocate their budget between goods and services?

Aware of the shortcomings of this approach, economic theory has attempted to develop a "new theory of the
consumer" (Barnett, 2003) that emphasises the existence of a consumption process similar to the production
process, allowing the consumer/end-user to act with the goal of achieving explicit ends rather than in an
impulsive/irrational way whose role is limited to "consuming" goods to satisfy his needs. This view makes
household behaviours tangible and objective. However, it has obscured a second novel aspect of the new theory,
which is to provide a framework for studying subjective choice formation. This vision is absent from the
traditional theory of utility, but it is essential if the consumer must determine his ends and seek information to
arbitrate choices (Fustier & Rouget, 1979).

Arbitrage is hence crucial because it drives consumer choice. If two products perform the same function,
consumers do not care which one they buy. As long as the services are the same, the latter will accept both a
wasteful and an environmentally harmful product. This is the indifference function.

Demonstrating a product/identity service's and functionality can increase end-user acceptance of one choice
over another (de Lima Salem & Picot-Coupey, 2020). To maintain satisfaction if the service supports it. Users are
committed to satisfaction, not products (Dufer & Moulins, 1989).

Thus, regardless of approach, trade-offs revolve around goods/services availability and price as an attribution of
value, all within a volumetric logic (a price corresponds to a given quantity). The Maslovian logic of moving from
one state of societal achievement to another and from one product/service life cycle to another never addresses
consumer satisfaction but the ability to produce more after buying a product/service.

Our Al work (Gans-Combe, Jun Kim, Mouhali tbp 2023) and social media testing have this meaning. We found
the source of economic agent satisfaction. It comes from transitioning from level x to level y in product access
through integrated functions. | want to train a fruit recognition algorithm. Only 68% of my database images were
used to train the algorithm, but it correctly identifies fruits. My algorithm training requires 68% of the resources.
End-user satisfaction is not improved by using more resources. | can deploy this algorithm without consuming
resources, as noted ~C. (or non-C). Contrary to theory, utility can be negative. Thus, a sobriety function generates
end-user satisfaction from non-consumption. Thus, satisfaction (S) is linked to accessibility (supply chain or a)
and product life cycle (existence or e). S = f(a) + f(e). We also know that any product/process service (P)

depends on these two functions at the right time (t). P = w and S=P/t.
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Thus, end-user satisfaction depends on economic agents' ability to implement processes that meet my needs.
Each element of f(a) and f(e) can be broken down into activities, drivers, resources, and costs through “Activity
best costing” applied to production (Chea, 2011). We also know we don't need to use all resources to reach a
satisfaction level that allows end-users to continue production/usage.

Thus, S and P converge, meet, and diverge at a limit. How do | determine my non-consumption point (my
optimum trade-off between satisfaction and efficiency) and decide which variable to satisfy? Safety, deployment
simplicity, and (Kitchenham & Pfleeger, 1996). or price trade-off. Three functions converge until the decision
point, then diverge.

Adequacy models as arbitrage tools are widely used in Al, but are they applicable to social network architectures?

3. Social media sobriety pits

Social media have a complex sobriety pool detection profile. Their architectures and productive cycles are
fragmented and not fully dematerialised (Bossetta, 2018). The diversity of services these structures offer—
messaging, video, search, affinity or relevance networking—consume fluids, but not exclusively.

3.1 Complex architectures, but shared resources needs.

Resources needs per social
networks transaction types

Homogeneous resource typologies for a range
of uses.

Human resources, production means (cameras, sound devices, softwares..),
terminals (computers, smartphones, tablets...), energy.

@ Software

Software is a set of instructions, data or programs used to operate hardware

and execute specific tasks. It refer to applications, scripts and programs that run on
a devices. Software requires human resources (from planning to testing and
deployment), hardwares, testing environments, and of course...energy.
® Hardware
All the physical elements that make up an electronic system. Requires production
Softwares factories and production mssuur:c‘.s to built on (either \:xtrac.u:d of recycled) :
including rare earth, ect...rely on third parties operations which make the social
media industry dependant
® Terminals
Although this is related to hardware, it is distinguished here because of its
G functionality and the end-user overhead. In line with the sobriety check, this

distinguishes the stakeholder who benefits from these procedural savings. These
elements require human intervention and different components and rare earths,
energy & fluids but can also be recycled or cannibalised to reduce costs through
re-use

Networks

Communications technology and protocols refers to all equipment and programs
that are used to process and communicate information. These elements require

human intervention and different components and rare earths, energy & fluids
Servers and

Hardware @ Networks
These are the physical or non-physical links between the different communication
nodes. They require mainly human intervention and industrial supplies, as well as
energy.

Terminals

This is a subset of the netwarks identified separately because of the stakeholders
involved (the end users) and the concentration of related resources. This distinction
allows a better visibility of the granularity of the concerned assets, thus of the
impact of sobriety according to the operational perimeter.

Figure 3: Resource needs per social networks transaction types

Indeed, without the physical media that enable their distribution—smartphones, computers, etc.—none of these
tools or offers would exist (networks, servers, but also algorithmic capacities, etc.). Despite their energy needs,
these offers incrementally consume rare earth, human resources, and programmatic skills (see Figure 3 - resource
needs per social networks transaction types).
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Figure 4: Social media resources needs cycle

However, resource analysis shows a homogeneity of goods and services needed to build, implement, and deploy
this type of service (Figure 4).

We have a resource-only backend for multiple frontends. Resource concentration, according to stakeholders,
differentiates resource needs. Thus, from the perspective of sobriety and the model to be implemented,
knowledge of a process associated with business concentration ratios could help identify areas for improvement
by establishing business resource profiles.

3.2 Social media and digital "overconsumption”

This accumulation of usages (Figure 4) affects resources, their use, and the planet (Kliem & Kao, 2015). "Digital
over-consumption" refers to a connected device's life cycle's environmental impact. From manufacturing to
disposal, a device emits CO2, creates waste, and degrades biodiversity. Every end-user action—using an app,
sending an email, or watching a video—impacts the environment. Three factors affect this.

3.2.1 Digital device production.

Connected devices use 79% water and fossil fuels. This process pollutes the earth and accounts for 70% of
France's digital technology's carbon footprint. Smartphones require global imports of lithium, gold, and metal.
Transport increases CO2 emissions. Miniaturization may not work because smaller components require more
energy, rare metals, and chemicals to make (Barney, 1995).

3.2.2  Communication infrastructure operations

"Pipes" and social media overconsume content, which must be stored in clouds or data centres. Since they need
coolants and electricity to run, these massive physical storage centres pollute a lot (Rong, Zhang, Xiao, Li & Hu,
2016). In 2021, social networks used 30% of global data centre electricity, which was 220-320 TWh or 0.9-1.3%
of global final electricity demand (IEA, 2022). In 2021, cryptocurrency mining consumed 100-140 TWh: “Over the
past several years, large data centres have used 10-30% more energy due to rapid workload growth. Data centre
energy use (excluding crypto) is expected to grow moderately in the coming years, but longer-term trends are
uncertain. Coolants are another example (including water: Mytton, 2021).
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3.2.3  Equipment’s’ End-of-life.

A recent study (Magazzino, Mele, Morelli & Schneider, 2021) examined the link between poorly deployed
information and communication technologies and waste ending up in open dumps where some raw materials
cannot be recycled due to infrastructure or design issues.

4. Recalculating to find sobriety pits

According to the global web index (GWI2022), personal (the primary use) and economic imperatives drive social
media use and growth (job search, visibility) ... It is about sharing interesting content with friends or strangers
(Krishen, Berezan, Agarwal & Kachroo, 2016) or showing activism. These social tools are among the most widely
used (Pearce, Niederer, Ozkula, & Sdnchez Querubin, 2019).

Overconsumption is obvious: 4.33 billion mobile users consume 262 million Tons of EQCO2 per year, accounting
for 0.61% of global EqCO2 impacts in 2019 and 56% of France's carbon emissions. Additionally, superimposing
social network layers requires additional energy and resources. Thus, TikTok leads with 15.81 mAh/min, followed
by Facebook (12.36) and Snapchat (11.48). These use 10% of France's annual electricity consumption. The energy
efficiency of established platforms like LinkedIn, YouTube or Instagram would be interesting to investigate as they
use the least energy while being quite client efficient.

Maintaining the user experience while finding a critical path for improving the links between production layers
that could lead to sobriety is the challenge. Thus, intimate knowledge of social network production processes is
essential.

What makes a social network? Schematically this is known, but in detail, this is less evident. In contrast, detecting
areas of sobriety requires this knowledge, the ability to identify in a production process when the resource is
overused in relation to the expected customer experience.

Therefore, any actor tempted by an approach to make its production practises lean should first question the
auditors to see if they can do this work. This requires a detailed understanding of each social network's
productive continuum, which breaks down each product/service into activities and cost drivers using accounting
standards guidelines. Without a clear picture of the processes and their costs, it seems compromised to look for
resource usage savings.

It is worth repeating that the customer experience determines a user's satisfaction with using a social network,
even to satisfy useless needs. According to research, Twitter loses 0.5% of its daily users monthly, directly
impacting customer experience (Stokel-Walker, 2022).

Thus, even elites use social media for satiety and psychological belonging (Bao, Sun, Han, Lin, and Lau, 2023).
They are also very high on the Maslovian scale (Ghatak and Singh, 2019). Due to overconsumption and customer
experience, the social media ecosystem seems like a textbook example of how to find sobriety pits. However, we
must consider resource stacking. Establishing a model on a horizontal process is different from analysing this
issue in a chain of N superimposed functionalities or N consecutive processes. N is 6.

We previously demonstrated that sobriety lies in optimising a process while satisfying the end user. At least six
simultaneous processes satisfy social media users. Therefore, it is necessary to identify the points of convergence
of these processes to express them in a way that makes the search for sobriety wells possible in a continuous

manner (in a single approach) rather than subsequently, which would make the analysis tedious. Restate: S =

5 P

P/t with: P = w .This expresses social media satisfaction. § = Zi=07

P2's resource knowledge is limited to what is not in P1 and later. If the usage structure of the previous
resource phase is known, only the unknown elements need to be explored, greatly reducing the work.
The resources are used concurrently in phase t.

f@)+f(e)
t

So: P =

_ (@ +fla) +Fle) +f(e) _ fla)+f(e) +f(a1) + f(er)

P
1 t t t
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P, =6f(a)4t-f(e)+5f(a1)+f(el)+4f(az)+f(ez)+3f(a3)+f(€3)+2f(a4)+f(e4)

t t t t
n f(as) :‘f(e5)

f(ay) ':f(e1) i 4f(a2) ‘:f(ez) i 3f((13) ‘t"f(e3) n Zf(a4) ':f(e4) +f(a5) :‘f(es)

Ps =6P+ 5

This shows that social media users' needs and resources are redundant. Finding and discarding these
unnecessary items may lead to sobriety pits.

5. Deploying the model: a ten components example.

Suppose a network consists of n components, each of which corresponds to a given use of resources (monetary
or otherwise). Let the marginal utility (1) of each component be given by:

i =Xx—yXQy
Hy =X — Yy XQ,
Up =X —Y XQy

where x and y are constants and Qi is the quantity of component i consumed. Here, x and y are treated as
constants to simplify the mathematical representation and analysis of the problem. Constants being fixed values
that do not change within the context of the problem being analyzed, they are in the present case used to
represent the underlying factors or characteristics of the components in the network that remain consistent
across all components. If the costs of products i are given by Ci, and the resources (budgetary or else) constraint
is fixed at R, then, to find the end user equilibrium, we need to set the marginal utility per monetary unit (let say
euros) spent on each component equal to each other and tending to 0. This gives us the following equation:

W _H_ M
G G Cn
((-OxQ) _(x-xQ))_  _(x=(rx0))
Gy & o
Solving for Qi, we get:
Qi= x=(Cixpi))
y

Substituting this expression for Qi into the resources’ constraint: C;Q, + C,Q, + -+ €, @, = R
We get:

Ci(x — (C1 X g ) _ Co(x — (C3 X 1y ) = Cn(x — (Cp X Uy ) - R
y y y
Now, we can solve for Ci in terms of R. This gives us the resources that will set the marginal utility vector to zero:
_ ((x = O x ) X R)
x*xy+yrum+y*pt. .ty iy

1

_ (x =@ xu))XR)
X*y+y*p +y*ppt+...+y*py,

2

_ ((x = (X up)) XR)
X*xy+y*py +y*ppt+..+y*py

n
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Thus, we have demonstrated the pathway to set the marginal utility vector to zero in the context of a network
with n components. In general, the end-user equilibrium condition can be used to find the costs that will set the
marginal utility vector to zero for any network with n components.

As explained before, ABC gives us the precise costs for each component of a network. By comparing the
calculated marginal utilities and the real costs, we can establish the optimal quantity of resources necessary to
satisfy the users, and the distance between the real costs observed and this optimum. It is in this interval, which
is repeated for each network, that the wells of sobriety can be found, making it possible to perpetuate user
satisfaction with the services offered while improving operational margins.

Let us now assume that there are two production pathways resulting in the same service, each composed - for
the purpose of this example - of ten components. These methodologies ultimately provide the same service, and
each pair of components performs the same service: component 1 of set 1 delivers the same service as
component 1 of set 2. We note that this approach is valid for n elements as mentioned above, but we limit the
number of components for the purpose of the example. Each service component has its own balanced marginal
utility, i.e., the point where users get what they want for a given resource usage (which can be monetary or
otherwise). Comprehensive Activity-Based Costing (ABC) matrixes provide for each component used in a digital
service, on one hand the volume of resource used, and on the other hand the associated costs (Shaffi & Al-
Obaidy, 2013). The process consists of eight essential steps. initially pinpointing the primary activities within the
network that contribute to overall costs, such as servers setup, service quality, and more as well as determine
the cost objects, which are the products or services for which costs will be allocated (Kamiya, 2020). Next, the
identified activities are categorized into cost pools to ascertain a cost driver for each cost pool. After calculating
the total cost of each cost pool by aggregating the associated direct and indirect costs of the activities within the
pool, an activity rate can be derived by dividing the total cost of each cost pool by the total quantity of the cost
driver.

With this information, a matrix can be formulated wherein rows symbolize cost pools and columns represent
cost objects. Within each cell, input the product of the activity rate for the corresponding cost pool and the
quantity of the cost driver utilized by the cost object. Subsequently, for every cost object, the allocated costs
must be consolidated from all cost pools to derive the total indirect cost for that particular object.

Finally, direct costs must be combined with the allocated indirect costs from the Activity-Based Costing matrix to
ascertain the total cost for each cost object.

By comparing the costs and marginal utilities of the components in the two production pathways, we can
determine the most efficient pathway to achieve the desired level of user satisfaction while minimizing resource
consumption. This analysis can help organizations optimize their service offerings, reduce waste, and ultimately
improve their bottom line.

Marginal Utility Curves, Zero Points, and Linking Curves for Two Sets of Components

Marginal Uity

~1000

-1250

~1500

-1750

Gouumas

P TR

Figure 5: Marginal utility curves and links for two sets of resources components used in a network production
process.
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From these elements we calculate (Figure 5):

(1) the marginal utility of each component. This allows us to demonstrate that - for an identical activity - one set
of components requires significantly more resources than another, the marginal utilities for components 5 and
10 of the second set being above 250 resource units,

(2) the distance between marginal utilities of each set (or couple) of components with a given volume. This
approach makes it possible to carry out an arbitration between components, thus, to test the subsidiarity of the
components, which is called homogeneity in economics. Having done this, we can extrapolate the optimal
component basket to render the desired service, thus highlighting both the sobriety wells per component and
components group.

We note that in our example, the marginal utility holding towards 0 is fast reached, which indicates an important
propensity of the networks processes to waste resources if not optimized.

6. Recommendation as conclusion

Due to technical layers and different expectations and operations in comparable instruments, streamlining
industrial methods for resource consumption efficiency in the social media industry is complex. They combine
institutional and family communication, and commercial and personal interests on the same platforms. This
operational confusion results in polymorphous expectations, which serve as a vector for resources over usage.
In fact, the more numerous and diverse the expectations, the more the associated processes are plagued by the
same flaws, as demonstrated above.

Consequently, there are multiple satisfaction curves with increasing expectations. The modeller’s response can
only be matrix-based in this instance. Also, in such a framework, work on harmonising processes and
expectations appears necessary, mainly because we can observe that the social media platforms with the most
dedicated channels are the ones that have discovered their economic model and are the most environmentally
responsible (Dunia, Rambe & Fauzi, 2018, March).
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