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Abstract. Civil engineering faces the dual challenge of decarbonisation and resilience under increasing threat of climate 
change. While artificial intelligence (AI), machine learning, and digital twins are increasingly applied to optimise design, 
material reuse, and hazard modelling, most systems remain techno-centric and overlook the human dimensions of 
adaptation. This article addresses this gap by combining a nationally representative survey of Lithuanian residents (n = 1,013, 
2023) with the design of an AI-enabled platform for civil engineering adaptation. The survey captured six domains (hazard 
experiences, adaptation behaviours, motivational drivers, preparedness levels, institutional linkages, and climate attitudes) 
providing a behavioural evidence base that reveals how climate concerns and motivations translate into action. The results 
highlight differentiated motivational pathways, moderate levels of preparedness, uneven institutional communication, and 
four distinct citizen profiles with specific adaptation probabilities. Building on these insights, the article proposes the Citizen-
informed AI for Climate Adaptation (CiA-CA) framework, which systematically maps citizen evidence onto AI system design 
variables. The framework informs the development of the Lithuanian Construction Materials Reuse Optimization (LSEPO) 
platform, created under the Civil Engineering Research Centre (CIMC), by integrating hazard-prioritised digital twins, 
recommender systems with motivational weighting, clustering for personalisation, and preparedness-aware interfaces. 
Conceptually, CiA-CA advances the integration of behavioural adaptation evidence with socio-technical AI design. Empirically, 
it provides one of the first nationally representative datasets on climate adaptation behaviours in the Baltic region. 
Practically, it offers a blueprint for municipalities and industry partners in Lithuania to embed citizen evidence into AI-enabled 
platforms, with potential transferability to similar European contexts. 
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1. Introduction  
Climate change is redefining the conditions under which civil engineering systems are designed, built, and 
maintained. According to the Global Status Report for Buildings and Construction 2024/2025, the sector is 
responsible for approximately 32% of global final energy consumption and 34% of energy-related CO₂ emissions 
(UNEP & GlobalABC, 2025). Beyond operational energy, the rapid growth of demolition waste and embodied 
carbon from construction materials creates systemic pressures that demand new circular solutions (Kovacic et 
al., 2020; Wynn & Jones, 2022). In response, artificial intelligence (AI), machine learning, and digital twin 
technologies are increasingly deployed to optimize resource flows, predict hazards, and model resilient 
infrastructure futures (Rodrigo et al., 2024; Therias & Rafiee, 2023; Iranshahi et al., 2025). Initiatives such as the 
“D5 digital circular workflow” for material reuse (De Wolf et al., 2024), infrastructure digital twins spanning 
design through operations (Moshood et al., 2024), and policies incorporating material passports and circular 
construction material flows exemplify how AI and digital twins are being mobilized globally to optimize resource 
reuse and reduce waste across the construction lifecycle. While technically sophisticated, current AI tools often 
omit the human dimensions of adaptation. Several recent studies document these gaps: AI systems for climate 
evaluation frequently neglect local social-ecological variables and community values (Adaptation Fund, 2025); 
organizational readiness is shaped not just by capability, but by how individuals perceive limitations, risk, and 
trust (Übellacker, 2025); and psychological barriers such as transparency, fairness and perceived risk strongly 
mediate adoption even when technical performance is high (De Freitas et al., 2021; Ghosh et al., 2025). 

This article addresses that gap by combining a nationally representative survey of Lithuanian residents (n = 
1,013; 2023) with a design blueprint for AI-enabled adaptation support that will be operationalised in the 
Lithuanian Construction Materials Reuse Optimization (LSEPO) platform under the Civil Engineering Research 
Centre (CIMC). The survey systematically captured six domains (hazard experiences, adaptation actions, 
motivational drivers, preparedness levels, institutional linkages, and climate attitudes) providing a behavioural 
evidence base that explains how concerns and motivations translate (or fail to translate) into action. Crucially, 
these domains map to design variables (hazard priorities, motivational weights, preparedness-aware interfaces, 
and user profiles) that can be embedded in decision-support for municipal partners and industry stakeholders 
in Lithuania, with portability to similar Baltic and Northern-Central European contexts. Guided by research in 
adaptation psychology and technology adoption, we address four research questions: RQ1: How do citizens’ 
experiences of climate hazards relate to their concerns and reported adaptation actions?; RQ2: Which 
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motivational and perceptual factors are most strongly associated with different types of adaptation behaviours?; 
RQ3: How do preparedness and institutional contact influence the translation of concern into action?; and RQ4: 
In what ways can these behavioural insights be operationalised as features and profiles for AI-enabled 
adaptation platforms? 

The remainder of the article proceeds as follows. Section 2 reviews the literature on AI and digital twins in civil 
engineering, behavioural adaptation, sustainability-oriented recommender systems, and trustworthy/ 
participatory AI. Section 3 outlines the survey design and analytical approach. Section 4 reports results aligned 
with RQ1-RQ4. Section 5 situates the findings in the international literature and develops the CiA-CA framework 
into a concrete blueprint for LSEPO deployment. Section 6 concludes with contributions, limitations, and 
directions for longitudinal validation and live pilots with municipal and industry partners. 

2. Literature Review 
Recent scholarship has explored how AI and digital twin technologies can advance civil engineering by improving 
predictive modelling, optimising material flows, and supporting transitions to circular construction systems. 
Applications range from hazard simulation and resilience planning to life-cycle analysis and secondary material 
markets (Iranshahi, Zhang, & Xu, 2025; Therias & Rafiee, 2023; Wynn & Jones, 2022). These tools are noted for 
their ability to generate multiple alternatives, balance objectives (e.g., cost and carbon), and support decisions 
at scales beyond human capacity (Rodrigo, Omrany, Chang, & Zuo, 2024). However, most of this work has 
concentrated on technical optimisation, with comparatively limited attention to the behavioural and social 
conditions that shape adoption. 

Behavioural research has consistently shown that citizens’ responses to climate risks depend not only on 
technical feasibility but also on perceptions, motivations, and institutional trust. Theories such as the Theory of 
Planned Behaviour and the Value-Belief-Norm framework underline the role of attitudes, perceived control, and 
normative values in shaping adaptation choices (Ajzen, 2020; Stern, Dietz, Abel, Guagnano, & Kalof, 1999). 
Empirical studies confirm that risk perception and efficacy beliefs are key predictors of whether individuals act 
on climate concern (Van Valkengoed, Perlaviciute, & Steg, 2024). Psychological distance and climate anxiety 
further influence outcomes: climate change is often seen to affect “others” or future generations, while anxiety 
can either mobilise or inhibit action depending on efficacy and preparedness (Clayton, 2020; Kühner, Schäfer, & 
Wamsler, 2025). Longitudinal studies also highlight the mediating role of institutional trust and perceived 
preparedness in the concern-action link (Wong-Parodi & Rubin, 2024). Together, this evidence shows that 
adaptation behaviour is contingent on socio-cognitive factors. Yet these insights are rarely operationalised into 
data structures that could inform AI-enabled civil engineering platforms, leaving a gap between behavioural 
evidence and system design. 

In parallel, recommender systems research demonstrates the value of personalisation in promoting sustainable 
choices. Personalised decision support has been shown to increase the acceptance of pro-environmental actions 
compared to generic campaigns, particularly when recommendations align with user motivations and values 
(Debnath, Chattopadhyay, & Ray, 2025; Sander, 2025). Multi-objective optimisation approaches allow such 
systems to balance criteria such as adoption probability, carbon reduction, financial savings, and equity (Satinet, 
De Wolf, & Reisch, 2025). However, most implementations stop short of linking behavioural survey data to 
computational pipelines. While conceptual calls for personalised sustainability tools are common, few blueprints 
exist for translating motivational profiles or preparedness gaps into feature vectors and objective functions in 
civil engineering contexts. In addition, trust and participation are also central to the AI adoption in public-facing 
systems. Scholars and policymakers emphasise that for AI to gain legitimacy it must be transparent, explainable, 
and accountable (Albahri et al., 2024; Agbabiaka, Haque, & Afolabi, 2025). OECD guidance similarly stresses 
citizen engagement and governance mechanisms that ensure fairness and accountability (OECD, 2025). Research 
in human-centred AI shows that uptake depends not only on accuracy but also on alignment with user values 
and well-being (Sebestyén, 2025; Shin & Lee, 2025).  Yet much of this literature remains normative, offering 
principles without empirically grounded variables that platforms can use to adapt interfaces and 
recommendations.  

Finally, existing participatory AI frameworks face well-documented limitations. Many remain confined to small-
scale pilots or experimental case studies, raising questions about scalability when applied across national or 
international contexts (Bryson & Theodorou, 2019; Jasanoff, 2020). Others encounter inclusivity gaps, since 
engagement processes often attract digitally literate or already motivated participants, while more vulnerable 
or less-connected populations (those typically most at risk from climate impacts) are underrepresented (Birhane 
et al., 2022). Furthermore, these frameworks often emphasise aspirational principles such as transparency, 
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fairness, and accountability, but provide limited methodological guidance on how behavioural variables such as 
motivations, preparedness, or trust can be systematically translated into system design logics (Shneiderman, 
2020; Rahwan, 2018). This results in a persistent gap between what participatory AI advocates in theory and 
what can be operationalised in practice.  

Together, these strands of literature underscore the need for socio-technical approaches to civil engineering 
adaptation, which this study develops through empirical survey evidence and AI design. 

3. Methods 
3.1 Study Design, Sample and Data Collection 

This study was designed to address four research questions (RQ1-RQ4) on how citizens’ hazard experiences, 
motivations, preparedness, and institutional contact relate to adaptation behaviors and how these insights can 
inform AI-enabled civil engineering design. To generate the necessary evidence, a nationally representative 
survey of Lithuanian residents (n = 1,013) was conducted in October-November 2023. The questionnaire, 
originally developed by Brink and Wamsler (2019), was adapted to the Lithuanian context using a back-
translation procedure to ensure conceptual equivalence. The analysis focuses on six domains that provide direct 
inputs for AI-supported adaptation: (i) Hazard experiences: self-reported exposure to storms, floods, heatwaves, 
cold spells, mould, or coastal flooding (measured as Yes/No); (ii) Adaptation actions: grouped into four 
categories: technical (e.g., installing flood barriers, retrofitting windows/roofs), social/organisational (e.g., 
helping neighbours, joining community preparedness initiatives), institutional (e.g., contacting municipalities, 
participating in public meetings), and ecosystem-based (e.g., tree planting, garden adaptation).   

Each reported adaptation action was recorded in binary form, distinguishing between those who had 
undertaken the measure (coded as 1) and those who had not (coded as 0). From these items, indices were 
constructed for each domain (technical, social, institutional, ecosystem-based) by calculating the proportion of 
actions undertaken within that category. In addition to actions, several attitudinal and contextual measures 
were included. Motivational drivers were captured across four dimensions: economic (“I act because it saves 
money”), ecological (“to protect nature”), social (“to help the community”), and ethical (“because it is the right 
thing to do”). All were measured using five-point Likert scales ranging from low to high importance. 
Preparedness was assessed through a single item asking respondents to rate their ability to cope with climate 
hazards, also on a five-point scale (1 = not at all prepared, 5 = very prepared). Institutional contact was measured 
by whether respondents reported having received information on climate risks from municipalities or other 
public bodies (Yes/No). Finally, climate attitudes were measured using two indices: general concern about 
climate change and climate-related anxiety, both rated on five-point scales. To account for heterogeneity in the 
population, the survey also collected socio-demographic variables including age, gender, education, income, and 
place of residence. These variables provided the basis for examining group-level differences in adaptation 
behaviour and for informing AI-driven segmentation and personalisation. 

The survey used a multistage stratified random sampling method, ensuring representation by geography 
(urban/rural), gender, age, education, and occupation. Data were collected through face-to-face interviews 
across 31 cities and 43 villages. The sample was balanced by gender (54% women, 46% men) and broadly 
reflected national population structures in age, income, and education. All fieldwork was conducted by Baltijos 
tyrimai, following ESOMAR guidelines and EU standards for survey research. Participation was voluntary, 
informed consent was obtained, and all responses were anonymized and securely stored. 

3.2 Analytical Approach 

Survey data were analysed using Python (pandas, numpy, scipy.stats). Analyses were organised around the four 
research questions. For RQ1, descriptive statistics were used to summarise the proportion of respondents 
reporting exposure to storms, heatwaves, flooding, and other hazards, and regression models tested whether 
hazard experience was associated with higher concern and a greater likelihood of adaptation actions. For RQ2, 
adaptation behaviours were examined by calculating the frequencies of technical, social, institutional, and 
ecosystem-based measures, and regression models estimated how different motivational dimensions 
(economic, social, ecological, ethical/other) predicted these behaviours. For RQ3, preparedness was analysed as 
an intermediate variable linking motivations to actions, and municipal information was examined as a potential 
moderator of the concern-action relationship. These associations were tested using mean comparisons, ANOVA, 
and regression models with interaction terms. For RQ4, population heterogeneity was explored through 
clustering analysis. A four-class solution was selected based on fit statistics and interpretability, and predicted 
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probabilities of each adaptation action were calculated for each class to identify distinct citizen profiles relevant 
for AI personalisation. 

Instrument reliability was confirmed with Cronbach’s alpha (overall α = 0.92; subscales 0.76-0.80). Missing data 
were minimal (<2% per item) and addressed using multiple imputation by chained equations, with listwise 
deletion applied as a robustness check. Survey weights were applied to correct for small deviations from national 
population distributions. These procedures ensured that the analyses rested on a validated and representative 
evidence base suitable for translating behavioural patterns into AI design features. 

4. Results 
The results are presented in line with the four research questions (RQ1-RQ4), moving from hazard exposure, 
through motivational drivers and mechanisms, to population profiles that inform AI personalisation. 

RQ1. Hazard exposure and adaptation responses. A significant minority of Lithuanian households has already 
been affected by climate hazards. The most frequently reported experiences were storms and strong winds 
(11.4%) and temperature extremes (8.3%), with smaller proportions reporting flooding (4.6%) or humidity-
related mould (3.7%), and coastal flooding virtually absent (0.1%). Table 1 summarises these findings. 
Respondents who had experienced any hazard reported slightly higher climate concern (average score 3.23 vs. 
3.14 on a five-point scale) and far higher adaptation activity (average of 34% vs. 12% of actions taken). The 
difference in behaviour was statistically large (Δ = 0.225; t ≈ 14.8), confirming that direct experience is a strong 
driver of action. 

Table 1: Hazard exposure among Lithuanian households 

Hazard type Respondents (%) 

Storms/wind/hail 11.4 

Heatwaves/cold spells 8.3 

Heavy rain/flooding 4.6 

Mould/humidity 3.7 

Coastal flooding 0.1 

RQ2. Motivations associated with different adaptation behaviours. Four categories of motivation were 
analysed: economic, social, ecological, and ethical/other. All scored relatively high (mean values between 3.5 
and 4.0 on a five-point scale), but they were associated with behaviour in different ways. Regression models 
showed that economic motives were the strongest predictors of technical measures (e.g., retrofitting, protective 
investments). By contrast, social and ethical motives were most strongly linked to community-oriented and 
ecosystem-based actions (e.g., helping neighbours, planting trees). Ecological concern correlated positively with 
overall action levels but lost significance once other motivations were included, suggesting its effect is mediated 
by more immediate drivers. 

Table 2: Motivations predicting adaptation behaviour 

Motivation type Effect on action (β) Significance 

Economic 0.027 p < .01 

Social 0.040 p < .01 

Ecological 0.012 n.s. 

Ethical/Other 0.022 p < .05 

These relationships are visualised in Figure 1, which plots respondents’ mean motivation scores against the 
number of adaptation actions undertaken. The scatter shows that while most individuals report high motivation 
(≈4/5), the majority cluster at low to moderate action counts (0-4 actions). The positive trendline indicates that 
greater motivation is indeed associated with more actions, but the spread of points highlights a persistent 
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“concern–action gap.” This gap is particularly visible among respondents with high motivation but very few 
reported actions. 

 
Figure 1: Motivation vs Adaptation Actions 

Taken together, Table 2 and Figure 1 demonstrate that different adaptation actions are fuelled by different 
motives, and that motivation alone does not guarantee action. For AI-enabled platforms, this underscores the 
need for tailored recommendations: technical actions should be framed in terms of affordability and economic 
incentives, while community and ecosystem measures can be promoted through appeals to ethical responsibility 
and social solidarity. 

RQ3. Preparedness and institutional contact. On average, citizens rated themselves only moderately prepared 
for climate risks (mean = 2.9 on a five-point scale). Preparedness was positively correlated with all motivational 
drivers (r ≈ 0.44-0.50), indicating that individuals with stronger economic, social, or ecological values also tended 
to feel more capable of responding. The results are consistent with a mediation pattern in which stronger 
motivational drivers are associated with higher perceived preparedness, which in turn predicts greater 
adaptation behaviour. Municipal information provided only a limited additional mechanism: respondents who 
reported receiving communication from municipalities were somewhat more likely to act, but the interaction 
between concern and municipal contact was small and statistically uncertain. These findings suggest that 
institutional information on its own is insufficient to generate behaviour change unless it is coupled with 
motivational and efficacy supports. 

RQ4. Adaptation profiles for AI personalisation. To capture heterogeneity in the Lithuanian population, a 
clustering analysis was applied to motivational indices, concern, anxiety, preparedness, and institutional 
variables. A four-profile solution provided the clearest structure (Figure 2). The largest group, Baseline 
pragmatists (48%), were characterised by mid-level motivations and only average readiness. Their uptake of 
adaptation actions was modest, with relatively low shares across all categories (10% technical, 18% social, 8% 
institutional, 16% ecosystem). A smaller but broadly engaged group, High-motivation all-in adopters (31%), 
scored very high across all motives and reported strong readiness. They showed consistent action across 
categories, particularly in social (31%) and ecosystem measures (23%). Two minority profiles stood out. The 
Community & nature oriented (8%) group combined high ecological and social motives with high readiness but 
low municipal communication. They displayed the highest uptake of community and ecosystem measures (41% 
and 40%, respectively), alongside above-average technical (24%) and institutional (23%) actions. By contrast, the 
Low engagement group (13%) had the lowest motivations, concern, and readiness, translating into minimal 
action across all categories (4-9%). 
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Figure 2: Motivations predicting adaptation behaviour 

These profiles illustrate actionable levers for AI design: for example, emphasising cost savings for pragmatists, 
ecological/community benefits for the nature-oriented, and confidence-building tools for the low-engagement 
group. They provide a direct pathway from behavioural evidence to personalisation parameters for the 
conceptual framework discussed in Section 5.2.  

5. Discussion 
5.1 Results in Context 

The Lithuanian findings broadly align with international research on climate adaptation while also offering 
contextual nuances that sharpen their relevance for AI-enabled civil engineering. Hazard experience emerged 
as a strong driver of both concern and action, consistent with global evidence that lived experience intensifies 
perceived risk and motivates protective behaviour (Wong-Parodi & Rubin, 2024; Van Valkengoed et al., 2024). 
What the Lithuanian data add is specificity: storms and heatwaves were identified as the most influential 
triggers. This points to clear priorities for digital twin scenarios in mid-latitude contexts, where system design 
should emphasise, hazards already recognised as pressing by citizens. 

The analysis of motivations similarly extends behavioural theory. Prior work highlights the importance of efficacy 
beliefs and value orientations (Ajzen, 2020; Stern et al., 1999) but often collapses these into a single “pro-
environmental” dimension. Our results show instead that different motivations map onto different action types: 
economic concerns underpin technical measures, while social and ethical values drive community and 
ecosystem-based responses. This differentiation supports global findings that motivations matter (Clayton, 
2020) while providing operational clarity for recommender systems, which can assign motivational weights to 
actions rather than assuming a universal driver. Preparedness reinforced these patterns by acting as an 
intermediate factor: stronger motivational orientations were associated with higher self-reported readiness, 
which in turn predicted greater behavioural uptake. This echoes international work linking efficacy and readiness 
to adaptation (Kühner et al., 2025), but the Lithuanian case also underscores limits to institutional influence. 
Municipal communication was only weakly associated with increased action, diverging from studies that stress 
trust in institutions as a primary driver (Albahri et al., 2024). The implication is that information campaigns alone 
are insufficient; without reinforcing motivation or building efficacy, institutional contact does little to convert 
concern into practice. 

Finally, the clustering analysis confirmed international evidence on heterogeneity in sustainability adoption (Shin 
& Lee, 2025) while advancing it in two ways. First, it quantified the behavioural implications of different profiles 
across technical, social, institutional, and ecosystem domains. Second, it highlighted distinctive combinations 
(e.g., community- and nature-oriented citizens) were highly active in ecosystem measures despite limited 
municipal communication, while low-engagement citizens remained resistant across all domains. These findings 
suggest both opportunities and challenges: bottom-up ecological action can thrive even in the absence of 
institutional support, but low-readiness groups require new strategies if they are to be mobilised. 

5.2 From Evidence to Conceptual Framework 

A central contribution of this study is to show how empirical evidence on citizens’ adaptation behaviours can 
directly inform the design of AI-enabled platforms. Prior research has noted that decision support must align not 
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only with technical optimisation but also with user values, capacities, and institutional contexts (Baxter & 
Sommerville, 2011; Sander, 2025). By linking survey results to system design, this study demonstrates how 
behavioural data can serve as inputs rather than background context. Four design implications follow. First, 
hazard experience matters: citizens affected by storms or heatwaves were more active, suggesting digital twins 
should prioritise these hazards to increase salience and legitimacy (Therias & Rafiee, 2023). Second, motivations 
are diverse: economic motives drive technical measures, while social and ethical concerns support community 
and ecosystem actions, meaning recommender systems should weight recommendations according to user 
profiles (Ajzen, 2020; Sander, 2025). Third, preparedness shapes uptake: higher self-assessed readiness 
mediates between motivation and action. Interfaces should therefore adapt to user readiness, offering simple, 
confidence-building options to low-readiness users and more complex portfolios to high-readiness ones 
(Kühner, Schäfer, & Wamsler, 2025; Albahri et al., 2024). Finally, population heterogeneity enables 
personalisation: clustering revealed four citizen profiles with distinct probabilities of action, providing a natural 
basis for profile-based segmentation in human-centred AI (Shin & Lee, 2025). 

 
Figure 3: Citizen-informed AI for Climate Adaptation framework 

Synthesising these insights, we propose a socio-technical design blueprint. At its centre is a recommender 
system that evaluates candidate measures against four objectives: adoption probability, expected CO₂ 
reduction, financial savings, and equity. The weight given to each objective is adjusted by citizen profile, ensuring 
that the system reflects the motivational and readiness patterns observed in the population. The pipeline 
unfolds in five stages: (i) profiling users into clusters, (ii) setting profile-specific priorities, (iii) generating 
candidate measures across technical, social, institutional, and ecosystem domains, (iv) scoring measures against 
weighted objectives, and (v) presenting tailored recommendations with transparent explanations. These design 
principles are brought together in the Citizen-informed AI for Climate Adaptation (CiA-CA) framework (Figure 1). 
The framework connects three layers: (i) Citizen evidence (hazard experiences, adaptation behaviours, 
motivations, preparedness, institutional linkages, and climate attitudes); (ii) AI system design (hazard-prioritised 
digital twins, recommender systems with motivational weighting, clustering for personalisation, and interfaces 
adapted to preparedness and communication channels); and (iii) Civil engineering outcomes (higher uptake of 
adaptation measures, greater resilience to storms and heatwaves, more efficient material reuse, and stronger 
equity and trust). By grounding system logic in behavioural evidence, the CiA-CA framework advances civil 
engineering adaptation as a socio-technical process. It responds to international calls for human-centred AI in 
sustainability (Debnath, Chattopadhyay, & Ray, 2025) and provides both a conceptual advance and a practical 
blueprint for platforms that are technically robust, socially resonant, and trusted by the citizens they aim to 
serve. 

5.3 Integration Path: LSEPO Deployment 

The CiA-CA framework will be implemented in the platform as a staged but continuous socio-technical 
integration. At the data layer, survey-based constructs (hazard exposure, motivational profiles, perceived 
preparedness, and institutional contact) are compacted into a LSEPO user model that can be elicited through a 
short onboarding module and, with consent, softly updated from in-platform interactions. On the modelling 
side, the digital-twin library will prioritise storms and heatwaves, reflecting the empirical salience of these 
hazards in Lithuania; scenario cards will render before/after material-reuse and household-adaptation outcomes 
parameterised by municipal and regional data where available. The recommender then operationalises the 
framework’s behavioural logic by ranking technical, social, institutional, and ecosystem measures against four 
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objectives (adoption likelihood, CO₂ reduction, cost savings, and equity) with profile-dependent weighting 
derived from the survey. Interfaces will be preparedness-aware: users who report lower readiness first 
encounter low-threshold, confidence-building steps and interactive simulations, whereas users with higher 
readiness are offered richer portfolios and bundled measures. To support legitimacy and governance, each 
recommendation is paired with a concise “why this?” explanation anchored in motivational fit and expected 
benefits; privacy, consent, and data minimisation are enforced, and model cards document data sources, 
assumptions, and equity checks. Technically, integration proceeds through an alpha phase in the CIMC lab (back-
testing and expert review), followed by a beta with one or two municipalities (A/B testing of profile-aware 
explanations and preparedness-tailored flows), culminating in a pilot scale-up that incorporates market signals 
for secondary materials and municipal incentives. Although tuned for Lithuania, the same pipeline can be ported 
to Baltic and Northern-Central European contexts with minor recalibration of hazard priors and motivational 
weights, thereby providing a practical route from population-level evidence to operational decision support. At 
the same time, it should be noted that the underlying evidence base comes from self-reported survey data and 
a cross-sectional design. This may limit generalisability beyond Lithuania, as hazard recall, motivational 
reporting, and adaptation behaviours can vary across countries and over time. Accordingly, transfer to other 
contexts requires recalibration with locally validated data and, ideally, longitudinal evidence to capture how 
motivations and preparedness evolve. 

6. Conclusions 
This study demonstrates how nationally representative behavioural evidence can be mobilised to design AI-
enabled adaptation support in civil engineering. Using a Lithuanian survey (n = 1,013), we showed that lived 
hazard experience (especially storms and heatwaves) correlates with higher concern and substantially greater 
action uptake; that motivations are differentiated, with economic drivers linked to technical measures while 
social and ethical values underpin community and ecosystem actions; that perceived preparedness functions as 
an intermediate factor between motivation and behaviour; and that citizens cluster into distinct profiles with 
characteristic action probabilities. Taken together, these results move beyond descriptive analysis to provide 
design variables (hazard priorities, motivational weights, preparedness-informed interface rules, and user 
profiles) that can be directly operationalised in decision-support systems. Building on these insights, we 
proposed the CiA-CA framework. The framework connects behavioural adaptation research with socio-technical 
AI design; empirically, it introduces one of the first nationally representative datasets on adaptation in the Baltic 
region; and practically, it provides a blueprint for translating population-level evidence into implementable AI 
features for municipal and engineering platforms in Lithuania and beyond. Importantly, this framework is not 
abstract. It will be integrated into the LSEPO platform. This integration ensures that the behavioural insights 
gathered here will inform real-world digital twins, recommender logics, and municipal communication 
strategies. In this way, CiA-CA contributes not only to academic debate but also to the operationalisation of 
national and regional adaptation infrastructures. 

Several limitations qualify these contributions. The data are self-reported and cross-sectional, which constrains 
causal inference and may over- or under-estimate real behaviours. Some constructs, such as preparedness, were 
measured parsimoniously, and institutional communication effects may depend on message quality and 
governance capacity not fully captured here. The framework itself remains design-oriented and requires 
prospective validation in live systems. Future work should therefore: (1) test CiA-CA in prototype deployments 
within LSEPO, evaluating offline accuracy and online outcomes such as adoption uplift, preparedness gains, and 
trust; (2) conduct longitudinal follow-ups to recalibrate motivational and preparedness weights as hazard 
experiences evolve; (3) expand explanation and governance layers, including profile-aware explanations, model 
cards, and equity auditing; and (4) assess transferability to other European contexts where hazard profiles and 
motivational structures may differ. By advancing adaptation support as a socio-technical endeavour (where 
optimisation is explicitly aligned with motivations, readiness, and institutional realities) this work outlines a path 
toward AI platforms that are technically robust, socially legitimate, and practically deployable. In doing so, it 
positions Lithuania, through CIMC and LSEPO, as a regional testbed for citizen-informed, AI-enabled climate 
adaptation that can inform broader European transitions. 
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