
  

Teaching Bayesian Reasoning as a Pathway Toward Active Thinking 
and Explainable AI 
Dimitrios Lappas1, Panagiotis Karampelas2 and Giorgos Fesakis1 

1University of the Aegean, Rhodes, Greece 
2Hellenic Air Force Academy, Dekeleia, Greece 

dlappas.aegean@gmail.com 
panagiotis.karampelas@hafa.haf.gr 
gfesakis@rhodes.aegean.gr 

Abstract: Decision-making under uncertainty requires not only computational tools but also critical thinking skills that 
allow individuals to evaluate assumptions, weigh evidence, and mitigate automation bias. While many contemporary AI 
systems operate as opaque black-box models, Bayesian Networks (BNs) provide a transparent and explainable alternative, 
making them well-suited for both decision support and AI education. This paper introduces an educational framework 
where learners construct, parameterize, and interpret Bayesian models to address authentic problems, such as classifying 
suspicious emails in cybersecurity. By explicitly modelling variables, dependencies, and prior assumptions, BNs engage 
students in probabilistic reasoning while promoting metacognitive reflection and critical evaluation of their decision-
making process. The contribution of this work is threefold: (1) it positions Bayesian Networks as both a mathematical 
reasoning tool and an accessible entry point into explainable AI; (2) it integrates probability theory, critical thinking, and 
transparency into a unified framework for Responsible AI education; and (3) it demonstrates how transparent reasoning 
can support human-in-the-loop decision-making and reduce automation bias. While the framework does not claim to solve 
the general challenges of explainability in complex AI models, it offers a concrete and transferable pathway for cultivating 
active thinkers capable of designing, interpreting, and questioning AI-assisted decisions. 

Keywords: Bayesian networks, Explainable AI, Probabilistic reasoning 

1. Introduction 
Critical thinking in decision-making is defined as the ability to analyse, evaluate, and synthesize information in 
order to choose the best possible course of action among multiple alternatives (Facione, 2015). It involves 
identifying biases, uncovering underlying assumptions, and weighing alternative options (Paul & Elder, 2006). 
Within decision-making contexts, critical thinking is not merely a theoretical competence but a dynamic 
process that guides individuals in making informed judgments, especially under conditions of limited or 
uncertain information. 

Decision-making under uncertainty represents a particularly demanding cognitive task, since decision-makers 
must often estimate potential outcomes based on incomplete or ambiguous data (Kahneman & Tversky, 
1979). Uncertainty may arise from either missing information or the inherent stochasticity of the environment. 
In such situations, critical thinking functions as a filter for risk assessment, helping individuals to mitigate 
systematic judgment errors and cognitive biases. 

Decision support tools are commonly employed to enhance critical thinking in uncertain contexts. These tools 
provide structured methods for analysing data, calculating probabilities, and evaluating scenarios, allowing 
decision-makers to combine quantitative and qualitative elements before reaching conclusions (Power, 2008). 
However, the increasing integration of artificial intelligence (AI) into decision-support systems has introduced 
both opportunities and challenges. A major concern is automation bias, the tendency of users to over-rely on 
AI recommendations even when they are incorrect (Parasuraman & Manzey, 2010; Goddard et al., 2012). This 
risk is exacerbated in “black-box” AI models, such as deep neural networks, which produce outputs without 
offering sufficient interpretability (Cabitza et al., 2017; Ribeiro et al., 2016). 

In this regard, Bayesian Networks provide a transparent and explainable alternative, grounded in probabilistic 
reasoning and causal modelling. By engaging users in the explicit definition of variables, dependencies, and 
prior assumptions, Bayesian reasoning not only supports more reliable decision-making but also cultivates 
critical and metacognitive skills (Tonekaboni et al., 2019). Through this process, learners are not passive 
recipients of AI outcomes but active participants who construct, test, and reflect on the models themselves 
(Bansal et al., 2019). 

While Bayesian Networks are inherently transparent due to their graphical structure and probabilistic 
reasoning, their educational and practical value can be further enhanced through integration with 
contemporary Explainable AI (XAI) frameworks. Modern libraries such as SHAP (Lundberg & Lee, 2017), and 

218 
The Proceedings of the 5th International Conference on AI Research (ICAIR 2025)

mailto:dlappas.aegean@gmail.com
mailto:panagiotis.karampelas@hafa.haf.gr
mailto:gfesakis@rhodes.aegean.gr


Dimitrios Lappas, Panagiotis Karampelas and Giorgos Fesakis 

LIME (Ribeiro et al., 2016) focus on generating local and global explanations for complex black-box models, but 
they often struggle to provide users with causal insights. Bayesian Networks can act as complementary tools 
within such frameworks by offering causal and probabilistic explanations that are both mathematically 
grounded and pedagogically intuitive. For instance, visualization dashboards that combine SHAP-like feature 
importance with Bayesian causal graphs can help learners and practitioners not only understand which 
variables influenced a decision, but also why these relationships exist within a broader causal structure. This 
integration bridges the gap between interpretable statistical modelling and state-of-the-art AI explainability, 
positioning Bayesian Networks as both a didactic instrument and a practical component of responsible AI 
pipelines. 

This paper introduces an educational framework for teaching Bayesian reasoning as a pathway to transparent 
and responsible AI. By progressively integrating concepts such as probability theory, conditional dependence, 
and Bayes’ theorem into real-world applications of Bayesian Networks, the approach aims to empower 
learners to both understand and critically evaluate AI-based decision-making. The ultimate goal is to 
encourage a shift from passive users of opaque AI systems to active thinkers capable of designing, interpreting, 
and questioning decision-support models in complex and uncertain environments. 

Importantly, this work does not claim to fully resolve the broader challenge of AI explainability, nor to 
guarantee the development of fully “active thinkers.” Instead, it positions Bayesian Networks as an illustrative 
case through which learners can engage with uncertainty, bias, and causal reasoning in an interpretable way. 
While the framework is grounded in Bayesian modelling, its principles—transparent reasoning, user 
involvement, and metacognitive reflection—can inform broader educational strategies for interacting with 
complex AI models, including deep learning systems when combined with XAI libraries. In this sense, the 
contribution should be viewed as a pathway: a modest but concrete step toward cultivating reflective and 
critically engaged users of AI. 

The main contribution of this paper lies in the design of an educational framework that integrates Bayesian 
reasoning into responsible AI education. By leveraging Bayesian Networks as both probabilistic models and 
interpretable learning tools, the framework offers a structured pathway for cultivating critical thinking, 
metacognitive reflection, and transparent decision-making under uncertainty. This contribution is situated at 
the intersection of mathematics education, explainable AI, and human-centred decision support. 

The innovation of the work is twofold. First, it introduces Bayesian Networks not only as mathematical 
constructs but also as explainable AI instruments that can be embedded in learning environments to promote 
active user engagement. Second, it demonstrates how these principles can complement broader XAI 
methodologies, positioning Bayesian reasoning as a pedagogically grounded yet technologically relevant bridge 
between statistical learning and modern AI systems. In doing so, the paper provides a novel perspective: 
fostering a shift from passive reliance on opaque AI outputs toward active engagement with interpretable, 
causally informed models. 

The remainder of the paper is structured as follows: Section 2 reviews related work on critical thinking, 
probabilistic reasoning, and research in Explainable AI (XAI). Section 3 presents the theoretical foundations of 
Bayesian reasoning. Section 4 introduces the proposed educational framework, followed by Section 5 which 
illustrates its application through a cybersecurity decision-making scenario. Section 6 outlines the 
methodological approach, Section 7 discusses implications for responsible AI and future directions, and Section 
8 concludes the paper. 

2. Related Work 
The integration of Artificial Intelligence (AI) into decision-making processes has been widely studied, 
particularly in domains such as healthcare, finance, and cybersecurity (Topol, 2019; Samek et al., 2017). While 
AI systems can improve accuracy and efficiency, their reliance on opaque "black-box" models such as deep 
neural networks has raised concerns regarding transparency, interpretability, and trustworthiness (Ribeiro et 
al., 2016; Cabitza et al., 2017). These challenges have been linked to automation bias, the human tendency to 
over-rely on automated recommendations even when they are incorrect (Parasuraman & Manzey, 2010; 
Goddard et al., 2012). 

To address these issues, research in Explainable AI (XAI) has sought to provide frameworks that enable users to 
understand and critically evaluate model outputs. Approaches such as LIME (Ribeiro et al., 2016) and SHAP 
(Lundberg & Lee, 2017) aim to approximate explanations for complex models, but their post-hoc nature has 
been criticized for offering partial or misleading insights (Lipton, 2018). In contrast, probabilistic graphical 
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models, and particularly Bayesian Networks (BNs), have been highlighted as inherently interpretable 
alternatives, as they explicitly represent causal relationships and conditional dependencies among variables 
(Pearl, 2018; Jensen & Nielsen, 2007). 

Within the educational domain, Bayesian reasoning has been proposed as a valuable tool for teaching 
probabilistic thinking and decision-making under uncertainty (Konold, 1989; Gigerenzer & Hoffrage, 1995). 
Prior studies emphasize that engaging learners in the construction and evaluation of Bayesian models not only 
improves their statistical literacy but also fosters critical thinking by requiring them to assess assumptions, 
update beliefs with new evidence, and reflect on their reasoning processes (Conati et al., 2002; Bansal et al., 
2019). Moreover, integrating Bayesian reasoning into AI education has been suggested as a pathway to 
developing more responsible and transparent uses of intelligent systems (Tonekaboni et al., 2019; Lyell et al., 
2021). 

The related literature was systematically reviewed using Google Scholar and Scopus databases combining 
search terms such as “Bayesian reasoning in education,” “Explainable AI,” “critical thinking and AI,” and 
“automation bias.” Studies were included if they discussed probabilistic reasoning, AI explainability, or 
pedagogical frameworks involving uncertainty. This transparent search and selection process ensured that 
both foundational theories and recent XAI developments were represented. 

Despite the rich literature on Explainable AI and Bayesian reasoning, few studies explicitly connect these 
domains within an educational context. Existing works often address either probabilistic reasoning or AI 
explainability separately, without proposing a unified pedagogical model that links the two. This gap highlights 
the need for an integrative framework that teaches explainable reasoning through hands-on Bayesian 
modelling—precisely the contribution of this study. 

Taken together, these strands of research highlight the need for pedagogical approaches that move learners 
from passive consumers of AI outputs to active participants in the construction of interpretable, probabilistic 
models. Our work builds on this line of inquiry by proposing a didactic framework for teaching Bayesian 
Networks as both a mathematical tool and a means of cultivating critical thinking for transparent AI. 

3. Theoretical Framework 
3.1 Reasoning under Uncertainty: Human and AI Perspectives 

Decision-making under uncertainty has long been analyzed through two complementary perspectives. The first 
is the intuitive and heuristic approach (Agor, 1986), which emphasizes how humans rely on mental shortcuts, 
intuition, and biases when probabilities are unclear. Classical studies by Tversky and Kahneman (1974) 
demonstrated that under uncertain conditions, individuals often deviate from rational models and adopt 
heuristics such as availability, representativeness, or anchoring. While these strategies enable fast judgments, 
they also introduce systematic errors. Interestingly, similar biases can be observed in the use of automated AI 
systems, where users may over-trust model outputs without scrutinizing underlying assumptions 
(Parasuraman & Manzey, 2010). 

The second perspective is the probabilistic approach (Selvin, 1975), which treats uncertainty through formal 
probability models. Within this approach two dominant schools emerge: the frequentist view, where 
probability reflects long-run frequencies, and the Bayesian view, where probability encodes the degree of 
belief about a hypothesis given available evidence. The Bayesian framework is particularly relevant to AI, since 
it provides a formal mechanism for updating prior beliefs with new data, enabling dynamic inference rather 
than static prediction (Pearl, 1988; Fenton & Neil, 2013). 

In the context of artificial intelligence, this theoretical distinction mirrors the contrast between black-box 
machine learning models, which often replicate heuristic reasoning without transparency, and Bayesian 
reasoning, which offers an explainable and statistically grounded methodology for handling uncertainty. Thus, 
understanding Bayesian inference is not only a matter of mathematical education but also a cornerstone for 
developing AI systems that promote transparency, accountability, and critical engagement. 

3.2 Cultivating Probabilistic Reasoning in Education and AI 

Developing probabilistic reasoning is widely recognized as a critical educational objective, particularly in data-
driven societies where uncertainty permeates decision-making (Fenton & Neil, 2011; Garfield et al., 2008; 
Batanero et al., 2016). Traditional instruction often emphasizes formulaic computation of probabilities, but 
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research suggests that fostering deeper understanding requires engaging learners in the cognitive process of 
reasoning under uncertainty rather than in mechanical calculation alone (Zieffler et al., 2008). 

From an AI perspective, this pedagogical insight parallels current debates in explainable AI (XAI). Just as 
students must move beyond rote learning of probability rules, AI users must move beyond passive acceptance 
of black-box predictions. Tools such as Bayesian Networks can serve both as computational models for 
inference and as didactic instruments that make reasoning under uncertainty visible and interpretable (Salter-
Townshend et al., 2012; Khuda et al., 2024). 

Inquiry-based and discovery-oriented approaches (Bruner, 2004) align well with this goal. By constructing 
Bayesian models, learners not only simulate uncertainty but also observe how new evidence reshapes prior 
beliefs in real time. This mirrors the way transparent AI systems should allow end-users to interrogate, adjust, 
and reflect on model assumptions. In addition, realistic case studies — such as cybersecurity or medical 
diagnosis — situate probabilistic reasoning in authentic AI-driven decision contexts, reinforcing both statistical 
logic and metacognitive awareness (Biehler et al., 2015). 

Ultimately, Bayesian reasoning bridges the gap between mathematics education and responsible AI design. It 
transforms uncertainty from an obstacle into a structured problem-solving process, equipping both learners 
and AI users with the capacity to critically evaluate assumptions, revise judgments, and resist automation bias. 
In this sense, the theoretical framework of Bayesian reasoning serves a dual role: as a cognitive scaffold for 
human learners and as a paradigm for building AI systems that are inherently explainable, transparent, and 
trustworthy. 

3.3 Theoretical Foundation of Bayesian Networks 

At the core of Bayesian Networks lies Bayes’ theorem, which formalizes how beliefs about the probability of a 
hypothesis are updated in light of new evidence. Formally: 

 

where P(H) is the prior probability of a hypothesis, P(E∣H) is the likelihood of observing evidence E given H, and 
P(H∣E) is the posterior probability once new information is incorporated. This updating mechanism positions 
Bayesian reasoning as a dynamic learning process, rather than a static estimation of probabilities (Pearl, 1988; 
Fenton & Neil, 2013). 

Bayesian Networks extend this principle by structuring conditional dependencies among multiple variables 
through a directed acyclic graph (DAG). Each node represents a random variable, while edges denote causal or 
probabilistic relationships. Crucially, each node is equipped with a conditional probability table (CPT) that 
quantifies how its value depends on its parents in the graph. This compact representation allows for efficient 
reasoning in complex domains where uncertainty is pervasive. 

 

Figure 1: Example of a Bayesian network with conditional probabilities (Zhang et. al., 2021) 

From an artificial intelligence perspective, Bayesian Networks are particularly valuable because they bridge 
two traditionally separate areas: 

• Statistical inference, by enabling robust probabilistic reasoning under uncertainty. 
• Causal modeling, by making explicit assumptions about how variables influence one another (Pearl, 

2009). 

This dual role makes Bayesian Networks central to the current movement toward explainable and responsible 
AI. Unlike neural networks or other black-box models, Bayesian Networks allow users to trace the reasoning 
process: one can examine which variables drive the outcome, how evidence updates prior assumptions, and 
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where uncertainty remains. This transparency fosters user trust and mitigates automation bias by encouraging 
critical engagement with model outputs (Tonekaboni et al., 2019). 

Furthermore, Bayesian Networks have been successfully applied in domains where both accuracy and 
interpretability are essential, including medical diagnosis, cybersecurity, environmental management, and 
decision-support systems (Fenton & Neil, 2013; Bansal et al., 2019). Their theoretical foundation thus provides 
not only a mathematical framework but also a paradigm for AI that is both transparent and pedagogically 
powerful, making them ideal for contexts where human decision-makers must remain active evaluators rather 
than passive recipients of algorithmic outputs. 

3.4 Problem Statement 

Despite the rapid progress of Artificial Intelligence in decision-support systems, a persistent challenge remains: 
the opacity of black-box models. Neural networks and other complex architectures often deliver accurate 
outputs but provide limited insight into their reasoning processes. This lack of transparency fosters automation 
bias, where users over-rely on algorithmic recommendations without questioning their validity (Parasuraman 
& Manzey, 2010; Goddard et al., 2012). Such dependence weakens critical thinking and undermines 
responsible AI adoption, particularly in high-stakes domains such as cybersecurity, healthcare, and 
environmental management. 

While Explainable AI (XAI) research has advanced significantly, most approaches focus on post-hoc 
explanations, attempts to justify or approximate the reasoning of opaque models (Ribeiro et al., 2016; Cabitza 
et al., 2017). These explanations, however, often remain abstract and insufficient for cultivating users’ ability 
to critically evaluate AI outputs. What is missing is a systematic pedagogical framework that trains decision-
makers not only to interpret explanations but also to construct and reason with transparent models 
themselves. 

Bayesian Networks (BNs) offer a promising foundation for bridging this gap. By explicitly encoding variables, 
dependencies, and conditional probabilities, BNs provide a transparent mechanism for probabilistic reasoning 
(Pearl, 1988; Fenton & Neil, 2013). Unlike black-box models, they allow users to inspect assumptions, update 
beliefs with new evidence, and trace causal pathways. Yet, their potential as an educational tool for teaching 
explainability and fostering critical thinking in AI contexts remains underexplored. 

This paper addresses this gap by proposing an innovative instructional intervention that employs Bayesian 
Networks not only as a statistical tool but also as a didactic framework for Responsible AI education. By 
engaging learners in building and testing their own BN models, the approach shifts them from passive users of 
opaque systems to active thinkers capable of transparent reasoning and informed decision-making. 

Figure 2 illustrates the overall research design and process, outlining the methodological steps from 
theoretical foundation to data interpretation. 

 
Figure 2: Research Design and Process Flow 

4. Educational Framework: Bayesian Reasoning as a Pathway to XAI 
The proposed educational framework positions Bayesian Networks not only as a statistical tool but as a 
structured pathway toward cultivating explainable reasoning in Artificial Intelligence (AI). While traditional 
probability instruction often focuses on abstract formulas and mechanical calculations, this framework 
emphasizes the progressive development of critical and metacognitive skills through authentic problem-
solving. The core innovation lies in explicitly linking Bayesian reasoning with the principles of transparency and 
interpretability that underpin Explainable AI (XAI). 

The framework is organized into seven interconnected stages (table 1), each designed to build upon the 
previous one and guide learners from foundational probability concepts toward the construction and 
reflection on Bayesian models in real-world contexts. This staged progression ensures that learners move step 
by step from understanding uncertainty mathematically to practicing transparent reasoning in applied 
scenarios. 
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Table 1: Pedagogical structure of the intervention 

Stage Description Student Activity Learning Objective 

Introduction to 
Probability 

Basic concepts, definitions, and 
computations 

Solving simple probability 
problems 

Establishing a common 
mathematical foundation 

Independent & 
Dependent Events Relationships between events Identifying event relations in 

real-world scenarios 
Connecting abstract concepts with 
empirical observations 

Conditional 
Probability 

Updating probabilities with new 
information Analysing examples Understanding the influence of 

observations 

Bayes’ Theorem Application in belief revision Calculating simple Bayesian 
problems 

Introducing the logic of Bayesian 
updating 

Bayesian Networks – 
Theory 

Nodes, causal links, conditional 
probability tables 

Designing structures in 
software 

Linking theory with practical model 
building 

Application to 
Authentic Problems 

Case studies (e.g., 
cybersecurity, environment, 
diagnosis) 

Constructing and analysing 
Bayesian models 

Developing modelling and 
decision-making skills 

Presentation & 
Reflection 

Interpretation and discussion of 
results Presenting models to peers 

Fostering metacognitive 
awareness and communication 
skills 

Figure 3 presents the internal flow of the proposed educational framework, describing the sequential learning 
stages through which participants engage with Bayesian reasoning and explainable AI concepts. 

 
Figure 3: Educational Flow within the Framework 

At each stage, learners are encouraged to not only compute probabilities but also to make their reasoning 
explicit. This emphasis on transparency mirrors the goals of XAI: making decision processes visible, 
interpretable, and open to critique. For example, when students update beliefs using Bayes’ theorem, they 
practice a transparent form of reasoning where assumptions (priors), evidence (likelihood), and updated 
conclusions (posterior) are all explicitly represented. Similarly, the graphical structure of Bayesian Networks 
allows learners to see how evidence propagates through causal dependencies, offering a direct analogy to the 
explanatory mechanisms that AI researchers aim to achieve in complex machine learning models. 

Thus, the educational framework goes beyond teaching probability theory. It instills an explainable mindset, a 
way of thinking where learners not only generate outputs but also understand and articulate the reasoning 
that leads to them. This dual orientation, combining mathematical rigor with explainability, prepares learners 
to engage critically with AI systems and provides a didactic microcosm of XAI principles. In this way, Bayesian 
reasoning becomes both a pedagogical bridge and a conceptual foundation for building responsible, 
transparent AI practices. 

5. Application: Bayesian Networks in Cybersecurity Decision-MakingProblem Setting 
To demonstrate the practical and pedagogical value of the proposed framework, this section presents a hands-
on example situated in the domain of cybersecurity. Decision-making under uncertainty is a daily challenge for 
security analysts, who must evaluate large volumes of incoming data—such as emails, logs, and network 
activity—in order to determine whether a potential incident is benign or malicious. This scenario provides a 
fertile context for engaging learners with Bayesian reasoning, since it requires combining incomplete and often 
ambiguous evidence while avoiding systematic cognitive biases. 

5.1 Problem Setup 

Using GeNIe Academic software, learners are asked to build a Bayesian network for email triage with one 
parent node and three evidence nodes: 

• Spam (parent; states: Yes, No) 
• Suspicious Sender (child of Spam; Yes/No) 

223 
The Proceedings of the 5th International Conference on AI Research (ICAIR 2025)



Dimitrios Lappas, Panagiotis Karampelas and Giorgos Fesakis 

 

• Unsafe Link (child of Spam; Yes/No) 
• Unusual Language (child of Spam; Yes/No) 

The model assumes conditional independence of the three evidences given Spam. 

Learners are also given the following probabilities (table 2) 

Table 2: Probabilities extracted from historical data 

Evidence node Condition P(Yes) P(No) 

Spam email  0.16 0.84 

Suspicious Sender given Spam=Yes 0.70 0.30 
 

given Spam=No 0.05 0.95 

Unsafe Link given Spam=Yes 0.65 0.35 
 

given Spam=No 0.10 0.90 

Unusual Language given Spam=Yes 0.80 0.20 
 

given Spam=No 0.15 0.85 

Learners must then compute the probability that a message is spam if it shows a suspicious sender and 
unusual language, but does not contain a link. Using the Bayesian network they developed, it turns out that 
the probability of an email with the above characteristics being spam is 0.85 (figure 4). 

 
Figure 4: The Bayesian network that the trainees are asked to build  

Through the constructed network, students apply Bayes’ theorem to update prior beliefs in light of new 
observations. For example, the absence of an unsafe link reduces the posterior probability of spam, but the co-
occurrence of a suspicious sender and unusual language significantly increases it. This dynamic revision 
illustrates how Bayesian reasoning handles uncertainty in a structured, interpretable way. 

The exercise also highlights how small changes in observed features can drastically shift decision outcomes, 
reinforcing the importance of data quality and feature evaluation in AI-driven decision support. 

5.2 Transparent Reasoning vs. Black-Box AI 

The strength of this activity lies not only in its mathematical rigor but also in its alignment with the principles 
of Explainable AI. Unlike opaque neural networks, Bayesian Networks make the reasoning process explicit. 
Students can clearly observe how each piece of evidence (e.g., unusual language) modifies the posterior 
probability of spam. The transparency of priors, likelihoods, and causal dependencies fosters metacognitive 
reflection, allowing learners to question their assumptions, identify potential biases, and understand why 
certain outcomes emerge. 

This transparency directly addresses the problem of automation bias: rather than blindly trusting algorithmic 
outputs, students learn to interrogate the decision-making process itself. In this way, the exercise not only 
enhances statistical literacy but also cultivates an explainable mindset, equipping learners with the ability to 
critically evaluate AI-driven decision-support systems. 
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5.3 Pedagogical and AI Implications 

From an educational perspective, this example reinforces the framework presented in Section 4 by bridging 
abstract probability theory with authentic, high-stakes decision-making scenarios. From an AI perspective, it 
highlights how Bayesian reasoning serves as a microcosm of XAI, demonstrating the value of transparent, 
causal, and interpretable modelling. By engaging in this process, students are not passive users of opaque 
algorithms but active thinkers who construct, test, and explain their models—mirroring the broader goals of 
responsible AI. 

6. Discussion 
This study highlights the pedagogical potential of Bayesian reasoning as both a method for structured decision-
making under uncertainty and as a model of explainable AI. By engaging learners in the explicit construction of 
Bayesian Networks, the framework reduces automation bias and emphasizes human-in-the-loop decision-
making. Rather than relying uncritically on opaque algorithmic outputs, students learn to interpret causal 
structures, evaluate assumptions, and iteratively update beliefs in response to new data. 

The contribution of this approach is therefore twofold. First, it empowers learners to become active thinkers, 
capable of questioning, testing, and refining models instead of acting as passive recipients of AI-generated 
outputs. Second, it provides a concrete example of explainable AI, where the reasoning process is transparent 
and interpretable. In contrast to black-box models, Bayesian Networks show how evidence combines to shape 
conclusions, fostering not only mathematical understanding but also a mindset of reflective and responsible 
decision-making. 

Nevertheless, some limitations must be acknowledged. The proposed framework currently focuses on 
Bayesian reasoning and does not directly extend to more complex models such as deep neural networks, 
which dominate many AI applications. While Bayesian Networks are uniquely suited for illustrating 
explainability through causal modelling, the generalizability of this approach requires further investigation. 
Future work should explore how similar pedagogical principles can be applied to other AI paradigms, for 
instance by integrating Bayesian explanations with post-hoc XAI tools such as SHAP or LIME, or by developing 
hybrid teaching modules where Bayesian reasoning complements the interpretability of more complex 
architectures. 

In this sense, teaching Bayesian reasoning acts as a bridge: it cultivates learners’ ability to critically reason 
under uncertainty (“active thinkers”) while simultaneously introducing them to transparent models that 
exemplify the principles of explainable AI. This dual orientation situates the intervention at the intersection of 
education, decision science, and responsible AI. 

7. Conclusion 
This paper introduced a pedagogical framework for teaching Bayesian reasoning as a pathway toward active 
thinking and explainable AI. By guiding learners through the progressive construction of Bayesian Networks, 
from probability fundamentals to real-world applications, the framework enables them to move beyond 
passive use of AI tools and toward active engagement with the reasoning process itself. 

The educational value lies not only in enhancing probabilistic literacy but also in cultivating critical and 
metacognitive skills that reduce automation bias and strengthen responsible decision-making. At the same 
time, the framework positions Bayesian reasoning as a paradigmatic example of explainable AI, demonstrating 
how transparent and causal models can complement modern AI practices. 

By positioning Bayesian reasoning as both a cognitive tool and an AI paradigm, the proposed framework 
illustrates how education can simultaneously nurture active thinkers and advance the goals of explainable and 
responsible AI. 

Ethics Declaration: No ethical clearance was required for this study. 

AI Declaration: AI tools were used solely for English language editing. 
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