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Abstract: Decision-making under uncertainty requires not only computational tools but also critical thinking skills that
allow individuals to evaluate assumptions, weigh evidence, and mitigate automation bias. While many contemporary Al
systems operate as opaque black-box models, Bayesian Networks (BNs) provide a transparent and explainable alternative,
making them well-suited for both decision support and Al education. This paper introduces an educational framework
where learners construct, parameterize, and interpret Bayesian models to address authentic problems, such as classifying
suspicious emails in cybersecurity. By explicitly modelling variables, dependencies, and prior assumptions, BNs engage
students in probabilistic reasoning while promoting metacognitive reflection and critical evaluation of their decision-
making process. The contribution of this work is threefold: (1) it positions Bayesian Networks as both a mathematical
reasoning tool and an accessible entry point into explainable Al; (2) it integrates probability theory, critical thinking, and
transparency into a unified framework for Responsible Al education; and (3) it demonstrates how transparent reasoning
can support human-in-the-loop decision-making and reduce automation bias. While the framework does not claim to solve
the general challenges of explainability in complex Al models, it offers a concrete and transferable pathway for cultivating
active thinkers capable of designing, interpreting, and questioning Al-assisted decisions.
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1. Introduction

Critical thinking in decision-making is defined as the ability to analyse, evaluate, and synthesize information in
order to choose the best possible course of action among multiple alternatives (Facione, 2015). It involves
identifying biases, uncovering underlying assumptions, and weighing alternative options (Paul & Elder, 2006).
Within decision-making contexts, critical thinking is not merely a theoretical competence but a dynamic
process that guides individuals in making informed judgments, especially under conditions of limited or
uncertain information.

Decision-making under uncertainty represents a particularly demanding cognitive task, since decision-makers
must often estimate potential outcomes based on incomplete or ambiguous data (Kahneman & Tversky,
1979). Uncertainty may arise from either missing information or the inherent stochasticity of the environment.
In such situations, critical thinking functions as a filter for risk assessment, helping individuals to mitigate
systematic judgment errors and cognitive biases.

Decision support tools are commonly employed to enhance critical thinking in uncertain contexts. These tools
provide structured methods for analysing data, calculating probabilities, and evaluating scenarios, allowing
decision-makers to combine quantitative and qualitative elements before reaching conclusions (Power, 2008).
However, the increasing integration of artificial intelligence (Al) into decision-support systems has introduced
both opportunities and challenges. A major concern is automation bias, the tendency of users to over-rely on
Al recommendations even when they are incorrect (Parasuraman & Manzey, 2010; Goddard et al., 2012). This
risk is exacerbated in “black-box” Al models, such as deep neural networks, which produce outputs without
offering sufficient interpretability (Cabitza et al., 2017; Ribeiro et al., 2016).

In this regard, Bayesian Networks provide a transparent and explainable alternative, grounded in probabilistic
reasoning and causal modelling. By engaging users in the explicit definition of variables, dependencies, and
prior assumptions, Bayesian reasoning not only supports more reliable decision-making but also cultivates
critical and metacognitive skills (Tonekaboni et al., 2019). Through this process, learners are not passive
recipients of Al outcomes but active participants who construct, test, and reflect on the models themselves
(Bansal et al., 2019).

While Bayesian Networks are inherently transparent due to their graphical structure and probabilistic
reasoning, their educational and practical value can be further enhanced through integration with
contemporary Explainable Al (XAl) frameworks. Modern libraries such as SHAP (Lundberg & Lee, 2017), and
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LIME (Ribeiro et al., 2016) focus on generating local and global explanations for complex black-box models, but
they often struggle to provide users with causal insights. Bayesian Networks can act as complementary tools
within such frameworks by offering causal and probabilistic explanations that are both mathematically
grounded and pedagogically intuitive. For instance, visualization dashboards that combine SHAP-like feature
importance with Bayesian causal graphs can help learners and practitioners not only understand which
variables influenced a decision, but also why these relationships exist within a broader causal structure. This
integration bridges the gap between interpretable statistical modelling and state-of-the-art Al explainability,
positioning Bayesian Networks as both a didactic instrument and a practical component of responsible Al
pipelines.

This paper introduces an educational framework for teaching Bayesian reasoning as a pathway to transparent
and responsible Al. By progressively integrating concepts such as probability theory, conditional dependence,
and Bayes’ theorem into real-world applications of Bayesian Networks, the approach aims to empower
learners to both understand and critically evaluate Al-based decision-making. The ultimate goal is to
encourage a shift from passive users of opaque Al systems to active thinkers capable of designing, interpreting,
and questioning decision-support models in complex and uncertain environments.

Importantly, this work does not claim to fully resolve the broader challenge of Al explainability, nor to
guarantee the development of fully “active thinkers.” Instead, it positions Bayesian Networks as an illustrative
case through which learners can engage with uncertainty, bias, and causal reasoning in an interpretable way.
While the framework is grounded in Bayesian modelling, its principles—transparent reasoning, user
involvement, and metacognitive reflection—can inform broader educational strategies for interacting with
complex Al models, including deep learning systems when combined with XAl libraries. In this sense, the
contribution should be viewed as a pathway: a modest but concrete step toward cultivating reflective and
critically engaged users of Al.

The main contribution of this paper lies in the design of an educational framework that integrates Bayesian
reasoning into responsible Al education. By leveraging Bayesian Networks as both probabilistic models and
interpretable learning tools, the framework offers a structured pathway for cultivating critical thinking,
metacognitive reflection, and transparent decision-making under uncertainty. This contribution is situated at
the intersection of mathematics education, explainable Al, and human-centred decision support.

The innovation of the work is twofold. First, it introduces Bayesian Networks not only as mathematical
constructs but also as explainable Al instruments that can be embedded in learning environments to promote
active user engagement. Second, it demonstrates how these principles can complement broader XAl
methodologies, positioning Bayesian reasoning as a pedagogically grounded yet technologically relevant bridge
between statistical learning and modern Al systems. In doing so, the paper provides a novel perspective:
fostering a shift from passive reliance on opaque Al outputs toward active engagement with interpretable,
causally informed models.

The remainder of the paper is structured as follows: Section 2 reviews related work on critical thinking,
probabilistic reasoning, and research in Explainable Al (XAl). Section 3 presents the theoretical foundations of
Bayesian reasoning. Section 4 introduces the proposed educational framework, followed by Section 5 which
illustrates its application through a cybersecurity decision-making scenario. Section 6 outlines the
methodological approach, Section 7 discusses implications for responsible Al and future directions, and Section
8 concludes the paper.

2. Related Work

The integration of Artificial Intelligence (Al) into decision-making processes has been widely studied,
particularly in domains such as healthcare, finance, and cybersecurity (Topol, 2019; Samek et al., 2017). While
Al systems can improve accuracy and efficiency, their reliance on opaque "black-box" models such as deep
neural networks has raised concerns regarding transparency, interpretability, and trustworthiness (Ribeiro et
al., 2016; Cabitza et al., 2017). These challenges have been linked to automation bias, the human tendency to
over-rely on automated recommendations even when they are incorrect (Parasuraman & Manzey, 2010;
Goddard et al., 2012).

To address these issues, research in Explainable Al (XAl) has sought to provide frameworks that enable users to
understand and critically evaluate model outputs. Approaches such as LIME (Ribeiro et al., 2016) and SHAP
(Lundberg & Lee, 2017) aim to approximate explanations for complex models, but their post-hoc nature has
been criticized for offering partial or misleading insights (Lipton, 2018). In contrast, probabilistic graphical
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models, and particularly Bayesian Networks (BNs), have been highlighted as inherently interpretable
alternatives, as they explicitly represent causal relationships and conditional dependencies among variables
(Pearl, 2018; Jensen & Nielsen, 2007).

Within the educational domain, Bayesian reasoning has been proposed as a valuable tool for teaching
probabilistic thinking and decision-making under uncertainty (Konold, 1989; Gigerenzer & Hoffrage, 1995).
Prior studies emphasize that engaging learners in the construction and evaluation of Bayesian models not only
improves their statistical literacy but also fosters critical thinking by requiring them to assess assumptions,
update beliefs with new evidence, and reflect on their reasoning processes (Conati et al., 2002; Bansal et al.,
2019). Moreover, integrating Bayesian reasoning into Al education has been suggested as a pathway to
developing more responsible and transparent uses of intelligent systems (Tonekaboni et al., 2019; Lyell et al.,
2021).

The related literature was systematically reviewed using Google Scholar and Scopus databases combining
search terms such as “Bayesian reasoning in education,” “Explainable Al,” “critical thinking and Al,” and
“automation bias.” Studies were included if they discussed probabilistic reasoning, Al explainability, or
pedagogical frameworks involving uncertainty. This transparent search and selection process ensured that

both foundational theories and recent XAl developments were represented.

Despite the rich literature on Explainable Al and Bayesian reasoning, few studies explicitly connect these
domains within an educational context. Existing works often address either probabilistic reasoning or Al
explainability separately, without proposing a unified pedagogical model that links the two. This gap highlights
the need for an integrative framework that teaches explainable reasoning through hands-on Bayesian
modelling—precisely the contribution of this study.

Taken together, these strands of research highlight the need for pedagogical approaches that move learners
from passive consumers of Al outputs to active participants in the construction of interpretable, probabilistic
models. Our work builds on this line of inquiry by proposing a didactic framework for teaching Bayesian
Networks as both a mathematical tool and a means of cultivating critical thinking for transparent Al.

3. Theoretical Framework

3.1 Reasoning under Uncertainty: Human and Al Perspectives

Decision-making under uncertainty has long been analyzed through two complementary perspectives. The first
is the intuitive and heuristic approach (Agor, 1986), which emphasizes how humans rely on mental shortcuts,
intuition, and biases when probabilities are unclear. Classical studies by Tversky and Kahneman (1974)
demonstrated that under uncertain conditions, individuals often deviate from rational models and adopt
heuristics such as availability, representativeness, or anchoring. While these strategies enable fast judgments,
they also introduce systematic errors. Interestingly, similar biases can be observed in the use of automated Al
systems, where users may over-trust model outputs without scrutinizing underlying assumptions
(Parasuraman & Manzey, 2010).

The second perspective is the probabilistic approach (Selvin, 1975), which treats uncertainty through formal
probability models. Within this approach two dominant schools emerge: the frequentist view, where
probability reflects long-run frequencies, and the Bayesian view, where probability encodes the degree of
belief about a hypothesis given available evidence. The Bayesian framework is particularly relevant to Al, since
it provides a formal mechanism for updating prior beliefs with new data, enabling dynamic inference rather
than static prediction (Pearl, 1988; Fenton & Neil, 2013).

In the context of artificial intelligence, this theoretical distinction mirrors the contrast between black-box
machine learning models, which often replicate heuristic reasoning without transparency, and Bayesian
reasoning, which offers an explainable and statistically grounded methodology for handling uncertainty. Thus,
understanding Bayesian inference is not only a matter of mathematical education but also a cornerstone for
developing Al systems that promote transparency, accountability, and critical engagement.

3.2 Cultivating Probabilistic Reasoning in Education and Al

Developing probabilistic reasoning is widely recognized as a critical educational objective, particularly in data-
driven societies where uncertainty permeates decision-making (Fenton & Neil, 2011; Garfield et al., 2008;
Batanero et al., 2016). Traditional instruction often emphasizes formulaic computation of probabilities, but
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research suggests that fostering deeper understanding requires engaging learners in the cognitive process of
reasoning under uncertainty rather than in mechanical calculation alone (Zieffler et al., 2008).

From an Al perspective, this pedagogical insight parallels current debates in explainable Al (XAl). Just as
students must move beyond rote learning of probability rules, Al users must move beyond passive acceptance
of black-box predictions. Tools such as Bayesian Networks can serve both as computational models for
inference and as didactic instruments that make reasoning under uncertainty visible and interpretable (Salter-
Townshend et al., 2012; Khuda et al., 2024).

Inquiry-based and discovery-oriented approaches (Bruner, 2004) align well with this goal. By constructing
Bayesian models, learners not only simulate uncertainty but also observe how new evidence reshapes prior
beliefs in real time. This mirrors the way transparent Al systems should allow end-users to interrogate, adjust,
and reflect on model assumptions. In addition, realistic case studies — such as cybersecurity or medical
diagnosis — situate probabilistic reasoning in authentic Al-driven decision contexts, reinforcing both statistical
logic and metacognitive awareness (Biehler et al., 2015).

Ultimately, Bayesian reasoning bridges the gap between mathematics education and responsible Al design. It
transforms uncertainty from an obstacle into a structured problem-solving process, equipping both learners
and Al users with the capacity to critically evaluate assumptions, revise judgments, and resist automation bias.
In this sense, the theoretical framework of Bayesian reasoning serves a dual role: as a cognitive scaffold for
human learners and as a paradigm for building Al systems that are inherently explainable, transparent, and
trustworthy.

3.3 Theoretical Foundation of Bayesian Networks

At the core of Bayesian Networks lies Bayes’ theorem, which formalizes how beliefs about the probability of a
hypothesis are updated in light of new evidence. Formally:

P (E|H)P (H)

P(HIE) = P (E)

where P(H) is the prior probability of a hypothesis, P(E|H) is the likelihood of observing evidence E given H, and
P(HIE) is the posterior probability once new information is incorporated. This updating mechanism positions
Bayesian reasoning as a dynamic learning process, rather than a static estimation of probabilities (Pearl, 1988;
Fenton & Neil, 2013).

Bayesian Networks extend this principle by structuring conditional dependencies among multiple variables
through a directed acyclic graph (DAG). Each node represents a random variable, while edges denote causal or
probabilistic relationships. Crucially, each node is equipped with a conditional probability table (CPT) that
guantifies how its value depends on its parents in the graph. This compact representation allows for efficient

reasoning in complex domains where uncertainty is pervasive.
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Figure 1: Example of a Bayesian network with conditional probabilities (Zhang et. al., 2021)

From an artificial intelligence perspective, Bayesian Networks are particularly valuable because they bridge
two traditionally separate areas:

e Statistical inference, by enabling robust probabilistic reasoning under uncertainty.
e Causal modeling, by making explicit assumptions about how variables influence one another (Pearl,
2009).

This dual role makes Bayesian Networks central to the current movement toward explainable and responsible
Al. Unlike neural networks or other black-box models, Bayesian Networks allow users to trace the reasoning
process: one can examine which variables drive the outcome, how evidence updates prior assumptions, and
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where uncertainty remains. This transparency fosters user trust and mitigates automation bias by encouraging
critical engagement with model outputs (Tonekaboni et al., 2019).

Furthermore, Bayesian Networks have been successfully applied in domains where both accuracy and
interpretability are essential, including medical diagnosis, cybersecurity, environmental management, and
decision-support systems (Fenton & Neil, 2013; Bansal et al., 2019). Their theoretical foundation thus provides
not only a mathematical framework but also a paradigm for Al that is both transparent and pedagogically
powerful, making them ideal for contexts where human decision-makers must remain active evaluators rather
than passive recipients of algorithmic outputs.

3.4 Problem Statement

Despite the rapid progress of Artificial Intelligence in decision-support systems, a persistent challenge remains:
the opacity of black-box models. Neural networks and other complex architectures often deliver accurate
outputs but provide limited insight into their reasoning processes. This lack of transparency fosters automation
bias, where users over-rely on algorithmic recommendations without questioning their validity (Parasuraman
& Manzey, 2010; Goddard et al.,, 2012). Such dependence weakens critical thinking and undermines
responsible Al adoption, particularly in high-stakes domains such as cybersecurity, healthcare, and
environmental management.

While Explainable Al (XAl) research has advanced significantly, most approaches focus on post-hoc
explanations, attempts to justify or approximate the reasoning of opaque models (Ribeiro et al., 2016; Cabitza
et al., 2017). These explanations, however, often remain abstract and insufficient for cultivating users’ ability
to critically evaluate Al outputs. What is missing is a systematic pedagogical framework that trains decision-
makers not only to interpret explanations but also to construct and reason with transparent models
themselves.

Bayesian Networks (BNs) offer a promising foundation for bridging this gap. By explicitly encoding variables,
dependencies, and conditional probabilities, BNs provide a transparent mechanism for probabilistic reasoning
(Pearl, 1988; Fenton & Neil, 2013). Unlike black-box models, they allow users to inspect assumptions, update
beliefs with new evidence, and trace causal pathways. Yet, their potential as an educational tool for teaching
explainability and fostering critical thinking in Al contexts remains underexplored.

This paper addresses this gap by proposing an innovative instructional intervention that employs Bayesian
Networks not only as a statistical tool but also as a didactic framework for Responsible Al education. By
engaging learners in building and testing their own BN models, the approach shifts them from passive users of
opaque systems to active thinkers capable of transparent reasoning and informed decision-making.

Figure 2 illustrates the overall research design and process, outlining the methodological steps from
theoretical foundation to data interpretation.

Literature Framewoark Curriculum i ' . Discussion &
. i Implementation Data Collection Analysis .
Review Design Development Conclusion

Figure 2: Research Design and Process Flow

4. Educational Framework: Bayesian Reasoning as a Pathway to XAl

The proposed educational framework positions Bayesian Networks not only as a statistical tool but as a
structured pathway toward cultivating explainable reasoning in Artificial Intelligence (Al). While traditional
probability instruction often focuses on abstract formulas and mechanical calculations, this framework
emphasizes the progressive development of critical and metacognitive skills through authentic problem-
solving. The core innovation lies in explicitly linking Bayesian reasoning with the principles of transparency and
interpretability that underpin Explainable Al (XAl).

The framework is organized into seven interconnected stages (table 1), each designed to build upon the
previous one and guide learners from foundational probability concepts toward the construction and
reflection on Bayesian models in real-world contexts. This staged progression ensures that learners move step
by step from understanding uncertainty mathematically to practicing transparent reasoning in applied
scenarios.

222
The Proceedings of the 5th International Conference on Al Research (ICAIR 2025)



Dimitrios Lappas, Panagiotis Karampelas and Giorgos Fesakis

Table 1: Pedagogical structure of the intervention

Stage HDescription ”Student Activity HLearning Objective

Introduction to Basic concepts, definitions, and ||Solving simple probability  ||[Establishing a common
Probability computations problems mathematical foundation
Independent & Identifying event relations in |[Connecting abstract concepts with

Relationships between events

Dependent Events real-world scenarios empirical observations

Conditional Updating probabilities with new
Probability information

Understanding the influence of

Analysing examples .
ysing P observations

Bayes’ Theorem  ||Application in belief revision Calculating simple Bayesian||Introducing the logic of Bayesian

problems updating
Bayesian Networks — ||Nodes, causal links, conditional ||Designing structures in Linking theory with practical model
Theory probability tables software building

Case studies (e.g.,

Application to cybersecurity, environment,

Constructing and analysing ||Developing modelling and

Authentic Problems di . Bayesian models decision-making skills
iagnosis)
Presentation & Interpretation and discussion of . Fostering metacognitive o
. Presenting models to peers ||awareness and communication
Reflection results

skills

Figure 3 presents the internal flow of the proposed educational framework, describing the sequential learning
stages through which participants engage with Bayesian reasoning and explainable Al concepts.

Introduction to I"gzp:iﬁe:it& Conditional Bayes' Bayesian ATL';ﬂi?ctu Presentation &
Probability P Probability Theorem Metworks Reflection
Ewvents Problems

Figure 3: Educational Flow within the Framework

At each stage, learners are encouraged to not only compute probabilities but also to make their reasoning
explicit. This emphasis on transparency mirrors the goals of XAl: making decision processes visible,
interpretable, and open to critique. For example, when students update beliefs using Bayes’ theorem, they
practice a transparent form of reasoning where assumptions (priors), evidence (likelihood), and updated
conclusions (posterior) are all explicitly represented. Similarly, the graphical structure of Bayesian Networks
allows learners to see how evidence propagates through causal dependencies, offering a direct analogy to the
explanatory mechanisms that Al researchers aim to achieve in complex machine learning models.

Thus, the educational framework goes beyond teaching probability theory. It instills an explainable mindset, a
way of thinking where learners not only generate outputs but also understand and articulate the reasoning
that leads to them. This dual orientation, combining mathematical rigor with explainability, prepares learners
to engage critically with Al systems and provides a didactic microcosm of XAl principles. In this way, Bayesian
reasoning becomes both a pedagogical bridge and a conceptual foundation for building responsible,
transparent Al practices.

5. Application: Bayesian Networks in Cybersecurity Decision-MakingProblem Setting

To demonstrate the practical and pedagogical value of the proposed framework, this section presents a hands-
on example situated in the domain of cybersecurity. Decision-making under uncertainty is a daily challenge for
security analysts, who must evaluate large volumes of incoming data—such as emails, logs, and network
activity—in order to determine whether a potential incident is benign or malicious. This scenario provides a
fertile context for engaging learners with Bayesian reasoning, since it requires combining incomplete and often
ambiguous evidence while avoiding systematic cognitive biases.

5.1 Problem Setup

Using GeNle Academic software, learners are asked to build a Bayesian network for email triage with one
parent node and three evidence nodes:

e Spam (parent; states: Yes, No)
e Suspicious Sender (child of Spam; Yes/No)
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e Unsafe Link (child of Spam; Yes/No)
e Unusual Language (child of Spam; Yes/No)

The model assumes conditional independence of the three evidences given Spam.
Learners are also given the following probabilities (table 2)

Table 2: Probabilities extracted from historical data

| Evidence node HCondition HP(Yes)HP(No)‘

| Spam email H H 0.16” 0.84‘

|Suspicious Sender”given Spam=YesH 0.70” 0.30‘

| Hgiven Spam=No H 0.05” 0.95‘

| Unsafe Link HgivenSpam=YesH 0.65” 0.35‘

| Hgiven Spam=No H 0.10” 0.90‘

|Unusual Language“given Spam=YesH 0.80” 0.20‘

| Hgiven Spam=No H 0.15” 0.85‘

Learners must then compute the probability that a message is spam if it shows a suspicious sender and
unusual language, but does not contain a link. Using the Bayesian network they developed, it turns out that
the probability of an email with the above characteristics being spam is 0.85 (figure 4).

O Spam email

ves 85% [

No 15% A

(O Suspicius center O Unsafe link (O Unusual language
Yes 0% Yes 100% [ |
|!_0 100% [=] No 0% Z

Figure 4: The Bayesian network that the trainees are asked to build

Through the constructed network, students apply Bayes’ theorem to update prior beliefs in light of new
observations. For example, the absence of an unsafe link reduces the posterior probability of spam, but the co-
occurrence of a suspicious sender and unusual language significantly increases it. This dynamic revision
illustrates how Bayesian reasoning handles uncertainty in a structured, interpretable way.

The exercise also highlights how small changes in observed features can drastically shift decision outcomes,
reinforcing the importance of data quality and feature evaluation in Al-driven decision support.

5.2 Transparent Reasoning vs. Black-Box Al

The strength of this activity lies not only in its mathematical rigor but also in its alignment with the principles
of Explainable Al. Unlike opaque neural networks, Bayesian Networks make the reasoning process explicit.
Students can clearly observe how each piece of evidence (e.g., unusual language) modifies the posterior
probability of spam. The transparency of priors, likelihoods, and causal dependencies fosters metacognitive
reflection, allowing learners to question their assumptions, identify potential biases, and understand why
certain outcomes emerge.

This transparency directly addresses the problem of automation bias: rather than blindly trusting algorithmic
outputs, students learn to interrogate the decision-making process itself. In this way, the exercise not only
enhances statistical literacy but also cultivates an explainable mindset, equipping learners with the ability to
critically evaluate Al-driven decision-support systems.
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5.3 Pedagogical and Al Implications

From an educational perspective, this example reinforces the framework presented in Section 4 by bridging
abstract probability theory with authentic, high-stakes decision-making scenarios. From an Al perspective, it
highlights how Bayesian reasoning serves as a microcosm of XAl, demonstrating the value of transparent,
causal, and interpretable modelling. By engaging in this process, students are not passive users of opaque
algorithms but active thinkers who construct, test, and explain their models—mirroring the broader goals of
responsible Al.

6. Discussion

This study highlights the pedagogical potential of Bayesian reasoning as both a method for structured decision-
making under uncertainty and as a model of explainable Al. By engaging learners in the explicit construction of
Bayesian Networks, the framework reduces automation bias and emphasizes human-in-the-loop decision-
making. Rather than relying uncritically on opaque algorithmic outputs, students learn to interpret causal
structures, evaluate assumptions, and iteratively update beliefs in response to new data.

The contribution of this approach is therefore twofold. First, it empowers learners to become active thinkers,
capable of questioning, testing, and refining models instead of acting as passive recipients of Al-generated
outputs. Second, it provides a concrete example of explainable Al, where the reasoning process is transparent
and interpretable. In contrast to black-box models, Bayesian Networks show how evidence combines to shape
conclusions, fostering not only mathematical understanding but also a mindset of reflective and responsible
decision-making.

Nevertheless, some limitations must be acknowledged. The proposed framework currently focuses on
Bayesian reasoning and does not directly extend to more complex models such as deep neural networks,
which dominate many Al applications. While Bayesian Networks are uniquely suited for illustrating
explainability through causal modelling, the generalizability of this approach requires further investigation.
Future work should explore how similar pedagogical principles can be applied to other Al paradigms, for
instance by integrating Bayesian explanations with post-hoc XAl tools such as SHAP or LIME, or by developing
hybrid teaching modules where Bayesian reasoning complements the interpretability of more complex
architectures.

In this sense, teaching Bayesian reasoning acts as a bridge: it cultivates learners’ ability to critically reason
under uncertainty (“active thinkers”) while simultaneously introducing them to transparent models that
exemplify the principles of explainable Al. This dual orientation situates the intervention at the intersection of
education, decision science, and responsible Al.

7. Conclusion

This paper introduced a pedagogical framework for teaching Bayesian reasoning as a pathway toward active
thinking and explainable Al. By guiding learners through the progressive construction of Bayesian Networks,
from probability fundamentals to real-world applications, the framework enables them to move beyond
passive use of Al tools and toward active engagement with the reasoning process itself.

The educational value lies not only in enhancing probabilistic literacy but also in cultivating critical and
metacognitive skills that reduce automation bias and strengthen responsible decision-making. At the same
time, the framework positions Bayesian reasoning as a paradigmatic example of explainable Al, demonstrating
how transparent and causal models can complement modern Al practices.

By positioning Bayesian reasoning as both a cognitive tool and an Al paradigm, the proposed framework
illustrates how education can simultaneously nurture active thinkers and advance the goals of explainable and
responsible Al.

Ethics Declaration: No ethical clearance was required for this study.
Al Declaration: Al tools were used solely for English language editing.
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