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Abstract: Multilevel models (MLMs) are increasingly deployed in industry across different functions. Applications usually
result in binary classification within groups or hierarchies based on a set of input features. For transparent and ethical
applications of such models, sound audit frameworks need to be developed. In this paper, an audit framework for technical
assessment of regression MLMs is proposed. The focus is on three aspects: model, discrimination, and transparency &
explainability. These aspects are subsequently divided into sub-aspects. Contributors, such as inter MLM-group fairness,
feature contribution order, and aggregated feature contribution, are identified for each of these sub-aspects. To measure
the performance of the contributors, the framework proposes a shortlist of KPls, among others, intergroup individual fairness
(Diffing_mum) across MLM-groups, probability unexplained (PUX) and percentage of incorrect feature signs (POIFS). A traffic
light risk assessment method is furthermore coupled to these KPIs. For assessing transparency & explainability, different
explainability methods (SHAP and LIME) are used, which are compared with a model intrinsic method using quantitative
methods and machine learning modelling. Using an open-source dataset, a model is trained and tested and the KPIs are
computed. Itis demonstrated that popular explainability methods, such as SHAP and LIME, underperform in accuracy when
interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the
nature of the feature contribution (negative versus positive contribution on the outcome). For other contributors, such as
group fairness and their associated KPIs, similar analysis and calculations have been performed with the aim of adding
profundity to the proposed audit framework. The framework is expected to assist regulatory bodies in performing conformity
assessments of Al systems using multilevel binomial classification models at businesses. It will also benefit providers, users,
and assessment bodies, as defined in the European Commission’s proposed Regulation on Artificial Intelligence, when
deploying Al-systems such as MLMs, to be future-proof and aligned with the regulation.
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1. Introduction

Classification models in machine learning (ML) using logistic regression are common, albeit the higher accuracy
reported in some literature of its well-studied counterpart random forest (Begenilmis and Uskudarli, 2018;
Maroco et al, 2011). Conjointly, logistic regression and MLMs (Gelman and Hill, 2006) could be greatly beneficial
in circumstances, where a model needs to demonstrate local behaviour while recognizing the global context.
Applications result in binary classification within groups or hierarchies inherent in the dataset. MLMs are
deployed across different industries such as insurance (Amu et al, 2022), food production (Rodrigues, 2019), and
entertainment (Perano et al, 2021) within functions such as marketing and supply chain management (Carter et
al, 2015; Awaysheh et al, 2021).

The unfavourable impact of ML models on society is common knowledge (Angwin et al, 2016). Mikians et al
(2012) presented their findings on price discrimination by online retailers based upon geographical location.
More recently, algorithmic pricing in hospitality and tourism and its social impact has been researched by van
der Rest et al (2022). Decisions made by classification models are interpretable to the extent to which an
observer can understand the rationale behind those decisions (Biran and Cotton, 2017) and is able to
consequently provide explanations. The need for explainability is driven by among others, examination and
scientific explanation (Miller, 2019). The importance of a more structured and actionable approach towards
explainability is significant. (Raji and Buolamwini, 2019; Kazim, Denny and Koshiyama, 2021). The need to
monitor social responsibility and ethical behaviour (Dunlop, 1998; Verschoor, 1998) in the context of corporate
governance, as opposed to, competitiveness (Ho, 2005) in the market is unprecedented.

An industry in which the use of statistical/ML models is highly regulated is Banking, where supervision through

legislation (Bank, 2019) supported by stringent audit practices is common practice today. The European Central
Bank (Bank, 2019) provides an overview of practices required for the use of internal credit risk models. It is
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noteworthy that ML models deployed in Banking are based upon tabular data and therefore could be less
complex than applications elsewhere. Accordingly, this paper proposes an audit framework for use in logistic
regression MLMs.

2. Elements of audit

What is tantamount to fairness, bias and/or discrimination, is a subject of discussion in contemporary literature.
The broad range of stakeholders, including individuals, corporations, legislators, psychologists, and social
activists (Schroepfer, 2021; Kordzadeh and Ghasemaghaei, 2022), justifies the challenge of auditing ML
algorithms (Raji and Buolamwini, 2019; Landers and Behrend, 2022). Xue, Yurochkin and Sun (2020) presented
a set of inferential tools from an auditor’s perspective, whereas Landers and Behrend (2022) present a
framework for evaluating bias. They discuss the challenges faced by auditors and present the components of an
Artificial Intelligence (Al) system to be audited as model-related, information & perception-related, and meta-
components. Simultaneously, these issues are legislatively reflected in a structured and actionable manner
within the proposed Al Act (Commissie, 2021), which presents a conformity regime. Offering a tiered risk-based
approach, it addresses “remote biometric identification” and “biometric categorisation”. Furthermore, it sets
out an enforcement mechanism through audits and conformity assessments while recognizing the significance
of competence in specific Al technologies. As opposed to the EU data protection act, GDPR, (Voigt and Von dem
Bussche, 2017), which caters to compliance needs of data controllers when processing personal data, the
proposed EU Al Act addresses accountability in the whole supply chain and focusses also on models that process
this data.

2.1 Significance of the proposed EU Al act

The proposed EU Al Act encompasses a number of aspects, among others, classification of ‘high-risk Al systems,’
prohibited practices, transparency obligations, governance, and compliance procedures. It “sets out the legal
requirements for high-risk Al systems in relation to data and data governance, documentation and recording
keeping, transparency and provision of information to users, human oversight, robustness, accuracy and
security” (Commissie, 2021, p. 13). Articles 10 to 15 of Chapter 2 Title Ill of the proposed act elaborates on these
legal requirements.

Combining these legal requirements of the proposed act with components extracted from academic literature,
at an aggregated level, we propose 5 audit aspects: model, discrimination, transparency & explainability, I1S/IT
systems, and processes. These aspects and their consequent sub-aspects, contributors and KPIs are presented
in Table 1 and explained in subsequent sections. IS/IT systems and processes are beyond the scope of this paper.
The sub-aspects listed in Table 1 are non-exhaustive and are selected based on their significance in the proposed
Al act, their relevance to MLMs, and choices made to keep the discussion focussed.

2.2 Audit elements in focus

Auditing models entail concentrating assessment efforts on assumptions and considerations made prior to and
amidst building the model, and performance levels post deployment. The range of sub-aspects audited would
include design choices, data collection methods, formulation of relevant assumptions, availability & suitability
of data sets (pre-training), level of accuracy, robustness, and sensitivity & stability. A selection of these sub-
aspects and their corresponding contributors, as prescribed in Table 1, are evaluated in the context of MLMs in
section 3. When auditing discrimination aspects, we focus our efforts in section 4 on the examination of possible
biases through the sub-aspects: group & individual fairness. In section 5, we address transparency and
explainability by assessing and demonstrating the accuracy of commonly known explainable methods.
Consequently, sections 3, 4 and 5 present KPIs that substantiate the audit framework, making it actionable.

Additionally, the audit framework is demonstrated through a case-study using an open-source US health
insurance dataset (Kaggle, 2018). The dataset consists of 1338 rows with the columns: age, gender, BMI, number
of children, smoker, region, and insurance charges. A binary classification problem is formulated for predicting
which insureds are entitled to an insurance claim of greater than $6,000 per region based on the independent
variables age, BMI, and number of children.
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3. Model aspect

Auditing model aspect includes assessment of various sub-aspects that are related to model-building, such as
model assumptions, statistical properties, accuracy of predictions, model robustness, and others. This section
presents an assessment of two sub-aspects: formulation of relevant assumptions, and accuracy of predictions.

Table 1: Audit framework (* indicates beyond the scope of this paper, ** indicates proposed values)

Aspects Sub-aspects Contributors KPls Traffic light-RAG score
Red Amber Green
Model Formulation Model Extent and depth Qualitative Qualitative Qualitative
of relevant assumptions of their presence
assumptions in technical
documentation
Statistical VIF >5.0 [1.0-5.0] <1.0
properties SWT p <0.05 0.05<p<0.1 p>0.1
BPT p <0.05 0.05<p<0.1 p>0.1
Accuracy of Discriminatory AUC-ROC [0.0-0.5) [0.5-0.8) [0.8-1.0]
predictions power
Predictive F1-score [0.0-0.5) [0.5-0.8) [0.8-1.0]
power
Discrimination | Group fairness Predicted SP > 0.2 = 0.2 <0.2
outcome DI « 0.8 £0.8 (0.8-1.0]
Predicted & EqualOdds** >0.2 [0.1-0.2] <0.1
actual outcome
Individual Intra MLM- Diffing > 0.2 = 0.2 <0.2
fairness group fairness
Inter MLM- Diff|nd_|v||_|v| > 0.2 = 0.2 <0.2
group fairness
Transparency & Accuracy of Feature Porder [-1.0-0.3) [0.3-0.8) [0.8-1.0]
explainability explainability contribution
methods order
Aggregated PUX** >0.2 [0.1-0.2] <0.1
feature
contribution
Feature POIFS** [100-20)% [20-10)% [10-0]%
contribution
sign
Sensitivity* Sensitivity of
accuracy KPls to
background
dataset*
Sensitivity of
model output
around
inflection
points*
Processes*
IS/IT systems*

Contributors to the formulation of relevant assumptions include model assumptions and statistical properties.
Model assumptions differ per Al/statistical model (Hastie et al, 2009). Furthermore, most ML algorithms assume
that training, validation, and test datasets follow the same statistical distribution. KPIs for auditing model
assumptions are qualitative measures of the extent and depth of their presence in the technical documentation.

Various model assumptions are examined by testing statistical properties of a model and its data, e.g., to check
the independence of independent variables, a test for multicollinearity is performed. Most statistical properties
are model-dependent, e.g., to check if the residuals in generalized linear models are normally distributed and
have constant variance, homoskedasticity is tested. This is not a requirement for tree-based models.
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For classification problems, contributors to the accuracy of predictions include discriminatory power, and
predictive power of a model. Discriminatory power of a model is the ability to differentiate between the groups
being assessed and predictive power is the measure of its goodness of fit.

3.1 Model assumptions of logistic regression MLMs

In logistic regression MLMs used for binary classification (Gelman and Hill, 2006), model parameters
(coefficients) can vary per MLM-group. Random variables are used to model the variation between the MLM-
groups. The assumption that the random effects come from a common distribution (resulting in MLM-groups
sharing information), improves the predictive power of MLMs in comparison with simple regression (linear or
logistic) models. The random effects are modelled within the regression coefficients: in the slopes as fixed
effects, in the intercepts as random effects, or in the slopes & intercepts as mixed effects.

2

A simple logistic regression MLM with three independent variables x, x2, x3 and the dependent variable y

can be represented as:

(%) = apjy + Bixt + Blyxt + BExP + € (1)
where, i = {1, ..., N}, N is the total number of data points, j = {1, ...,J}, ] is the total number of MLM-groups,
P(y; = 1) is the probability that the ith dependent variable y; belongs to class 1, q[j); is the intercept term
varying per MLM-group j, ﬁ[lj]i and ,B’[Zj]i are the slope term varying per MLM-group j, 37 is the slope coefficient
which remains constant per MLM-group, x}, x?, and x; are the i*" independent variable and ¢; is the error term.
The o’s and B's are the model coefficients to be estimated. Assumptions of the model in (1) are:

P(y;=1)

L] The log-odds, lOg (1_ P(y; = 1)

), has a linear relationship with the independent variables x; .

=  The independent variables (x) are mutually uncorrelated.

=  The error terms are normally distributed with mean zero.

=  The varying intercept and slope terms follow normal distributions.
= The training and testing datasets follow the same distribution.

These assumptions lead to the following statistical properties:

- & ~N(0, a2),
- agj) ~ N (g, 02), and Bj; ~ N(uﬁ, aﬁ?), forj =1, ..., J.

To the case study, a MLM as per equation (1) is fitted with 4 MLM-groups corresponding to the variable region
(northeast, northwest, southeast, and southwest). The intercept (a), and the slopes corresponding to age (8?)
and BMI (82) per MLM- group are varied, whereas the slope corresponding to the number of children (83)
constant. The dataset had a train-test split of 95%-5%. The model was trained to estimate the model parameters.

3.2 KPIs for assessing statistical properties

For assessing statistical properties three KPIs are recommended: (i) variance inflation factor (VIF) (Hastie et al,
2009), and (ii) Shapiro-Wilk test (SWT) (Shapiro and Wilk, 1965), and (iii) Breusch-Pagan test (BPT) (Cook and
Weisberg, 1983).

VIF measures the degree of collinearity in data by estimating how much of the variance of a coefficient in a linear
model increases due to shared variance with other independent variables compared to the case where the
variables are uncorrelated. A value of VIF > 5.0 generally indicates high collinearity among variables that needs
to be mitigated (Schwarz, Chapman and Feit, 2020). The SWT, which is used to check normality in given samples,
are applied on the errors or residuals (€ term in equation (1)) in MLMs. If these residuals do not have constant
variance (homoskedasticity), then the outcomes of MLM cannot be trusted. The BPT checks for
heteroscedasticity (lack of constant variance) in the residuals.

The computed KPI values for the case-study are as follows:
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= VIF: The VIF for age, BMI, and number of children are estimated to be 7.5, 7.8 and 1.8 respectively. These
imply that collinearity of age and BMI need to be mitigated.

=  SWT: The test of residuals has a p-value = 0.0. This implies that there exists some non-linear relationship
between the independent and the dependent variables.

= BPT: The test for the residuals has a p-value = 0.0. This implies that the residuals do not have constant
variance.

3.3 KPIs for assessing accuracy of predictions

Area under the ROC curve (AUC-ROC) and F1-score are recommended as KPIs for measuring the discriminatory
power and the predictive power of a MLM (Tharwat, 2020). The Fl-score, commonly used to measure
performance of a classifier, has a range [0,1], with 1 indicating a perfect classifier. Area under the ROC curve,
with a range [0,1], measures separability of two classes in a binary classifier. A high value of ~1 indicates a good
classifier; 0.5 implies random classifications; < 0.5 implies very poor performance. (Tharwat, 2020). In the case-
study, the KPIs are computed as follows:

=  Average F1-score is 0.83 for all MLM-groups, implying that the binary classifier possesses a good predictive
power.

= Average AUC-ROC score is 0.91 for all MLM-groups. This is greater than 0.85, implying that the binary
classifier possesses a good discriminatory power.

4. Auditing discrimination

In a backdrop of expanding benefits of Al applications, the prevailing notion that algorithms taking decisions are
objective, is to a large extent driven by the subjectivity of humans. The lack of past legislative urgency in
assessing the ethical consequences of such decisions is due to a common belief that these algorithms are far
from human-like subjectivity. Underscoring the importance of researching machine ethics, Anderson and
Anderson (2007) discuss that work in ethical theory is often too isolated from actual applications in which ethical
dilemmas arise. One such dilemma is bias, which needs to be researched in Al systems in the context of different
applications.

Bias, synonymously used with discrimination and fairness in literature, in predictive analytics could be a result
of several causes (Chouldechova and Roth, 2020). It could arise at different stages in the model development
process: during pre-processing in the training dataset, during classification by the algorithm and at the post-
processing stage (Haas, 2019). Due to their inherent trait, classification algorithms, e.g., in MLMs, learn patterns
and make predictions based upon the available training data. A biased training dataset will certainly result in a
biased prediction. Controlling the quality of the training dataset for biases and demonstrating the lack of bias
through statistical comparisons with overlaying population is therefore essential.

4.1 Bias KPIs

Whereas measuring bias resulting from the pre-processing phase through a single KPI is challenging, KPIs for the
subsequent stages are abundantly researched in literature. Such KPIs are either associated with group fairness
or with individual fairness (Pessach and Shmueli, 2022; Haas, 2019) and can be further labelled as KPIs based
upon predicted outcome, predicted & actual outcome, or predicted probabilities & actual outcome. The scope
of subsequent discussions is limited to individual fairness and to the concepts of predicted outcome and
predicted & actual outcome in group fairness.

4.1.1 Group fairness — predicted outcome

The most commonly occurring KPIs in literature are Statistical Parity (SP) and Disparate Impact (DI), which
measure positive prediction across different groups. Such groups are characterized by attributes, such as gender
and ethnicity. SP is calculated as a difference,

P[P =1|s=1]-P[f=1]S=1]|< ¢ (2)

whereas DI is calculated as a ratio:
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P[Y=1|S=1] -

P=1js=1] — = ¢ (3)

In the equations above, ¥ = 1 corresponds to desired classification, such as getting an insurance or a job, S
represents the protected feature, such as gender or ethnicity,and S = 1and S # 1 represent the privileged and
under-privileged groups, respectively. For DI it is desirable to have the ratio as high as possible, since this would
imply that a desired classification is similar across the groups. Similarly, for SP, the value should be as low as
possible. Benchmarks for these KPIs are seldom, except for DI in the context of employment law in America
(Stephanopoulos, 2018), where a value of 0.8 or higher is acceptable.

4.1.2 Group fairness - predicted & actual outcome

The KPIs based only on predicted outcome fall short of considering the actual outcomes that an otherwise
accurate classification algorithm could have and thereby label the latter as unfair. The concept of Equalized-
Odds (Hardt, Price and Srebro, 2016) overcomes this disadvantage by computing the differences between the
false-positive rates and the true-positive rates (Pessach and Schmueli, 2022). Ideally, an algorithm is fair if the
false-positive and the true-positive rates are equal in the privileged and under-privileged groups. The KPIs are
calculated as follows:

Differn =|P[f =1]s=1Y=0]-P[f=1]s# 1Y =0] < e @)
Diffrr =|P[ = 1S =LY =1]-P[f =1|s# LY =1]| < ¢ (5)

The Equalized-Odds KPl is subsequently calculated as follows:
EqualOdds = 0.5 * (Dif fepgr + Dif frpr) (6)

In an ideal world, Equalized-Odds is zero. When applying the above KPIs to MLM-groups, it is useful to calculate
the KPIs for each MLM-group and analyse them in their respective MLM-groups.
4.1.3 Individual fairness

As opposed to equal treatment of groups, individual fairness relates to outcomes for individuals. The underlying
principle is that similar individuals are treated equally. In the context of MLMs, this equality can be interpreted
within a MLM-group, as,

Diffina = [P(Y® = y|x®,5O) - (YD = y|xD,sD)| < ¢, if d(i,j) ~ 0 (7)

where i and j denote two individuals with S and X representing sensitive attributes and associated features of
the individuals respectively (Pessach and Schmueli, 2022). The distance metric d(i,j) = 0 ensures that the two
individuals compared are in some respect similar. Equation (7) is extended to the interpretation of equality
across various MLM-groups, as,

Dif fina mim = |]p(?(i,a) = y|X(i,a)‘5(i.a)) — p(?(j,b) = y|X(j.b)‘5(j,b))| <e¢ (8)

where a and b refer to two different MLM-groups. It is important to calculate and interpret Dif 1,4 mim, Since
MLM-groups could differ substantially in their regression models as discussed earlier in section 3.

4.2 Fairness calculations in the use-case

Group fairness: With gender (male/female) as the sensitive group, the following KPIs are computed.
= SPof0.083, implying a relatively small difference between the sensitive groups.

= Dl of 0.89, indicating a value within the acceptable bandwidth of 0.8 or higher.

= Fqualized-odds per MLM-group of 0.28, 0.5, 0.33, 0.29 for northeast, northwest, southeast, and southwest,
respectively. These values are too high and unacceptable.

Individual fairness:
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*  Dif finq Was computed as 0.18 for two very similar individuals in the MLM-group northwest, with age as the
sensitive attributes and feature values (age = 30, BMI = 30, children = 2, gender = female) and (age = 35,
BMI = 30, children = 2, gender = female). This is not a high difference in probability for a small difference in
age.

*  Diffina mm Was computed as 0.07 for two individuals with same characteristics (age = 30, BMI = 30 children
= 1, gender = female) in two MLM-groups, northeast and southeast. The small value indicates a minor
difference in fairness.

5. Transparency and explainability aspect

Transparent and explainable Al models help create trust and understand model outputs at scale by enabling
interpretability (Lipton, 2018; Chen et al, 2022). The two main types of explanation methods are feature
attribution explanations, which explains the importance of each feature to model predictions, and
counterfactual explanations, which explains what minimum modification should be applied to the input data to
get a desired output (Chen et al. 2022; Molnar, 2020). In this paper, the focus is on feature attribution
explanations and the proposed sub-aspect: accuracy of explanation methods. Feature attribution explanations
elucidate to what extent each feature has contributed to the model prediction; thereby, explaining the
importance of each feature in that particular instance prediction (Zhou et al. 2021). The two most commonly
used additive feature attribution methods are SHAP (SHapley Additive exPlanations) and LIME (local linear
regression model) (Gramegna and Giudici, 2021; Ward et al, 2021).

The proposed contributors, feature contribution order, aggregated feature contribution, and feature
contribution sign, are assessed by comparing SHAP and LIME with a model intrinsic method. To assess feature
contribution order, Spearman’s rank correlation coefficient (pyrqer) is Used as a KPI (Hollander, Wolfe and
Chicken, 1973). To assess aggregated feature contribution and feature contribution sign, the KPIs probability
unexplained (PUX) and percentage of incorrect feature signs (POIFS) respectively are proposed.

5.1 Model explainability methods

For regression MLMs, model intrinsic feature attribution explanations are enabled through interpretability of
P(y;=1)
1-P(y;=1)
independent variables x’s (see equation (1)), the magnitude and sign of the B's show the linear contribution of
each independent variable to the dependent variable in the log-odds space. Similarly, the ap;; represents the

base value contribution to the log-odds term when all the independent variables are set to zero.

the estimated model coefficients in equation (1). Since log( ),follows a linear relationship with the

LIME is a model-agnostic method, which provides explanations by learning a surrogate interpretable model
locally around the prediction (Ribeiro, Singh and Guestrin, 2016). The surrogate interpretable models used are
generally linear regression models with regularization or decision trees (Molnar, 2020). In this paper Linear LIME
is used, which uses a linear regression model to locally approximate Logistic Regression MLM predictions. This
choice is made to facilitate comparison of the feature contribution/importance estimated by Linear LIME with
the model intrinsic method.

Based on Shapley values from game theory, SHAP is a method designed to provide explanations for individual
prediction instances by assigning each feature with an importance value. Lundberg and Lee (2017) propose
model agnostic and model specific SHAP approximations. In the case study, the model agnostic Kernel SHAP
method in log-odds is deployed. Kernel SHAP connects Shapley values and linear LIME to compute the
importance of each feature.

Python libraries developed by Lundberg and Lee, (2017) and Ribeiro, Singh and Guestrin, (2016) are used for
computing the SHAP and LIME feature contributions, respectively.

5.2 KPIs for assessing accuracy of explanation methods

DPorder 1S computed by comparing the ranks of feature contribution magnitude of SHAP and LIME with model
intrinsic method. It can take values in the range [-1, 1], varying between a worst-case negative association (-1)
to a best-case positive association (+1). PUX is calculated as absolute value of the difference between the
probability estimates obtained from the model intrinsic method and those obtained from the SHAP or LIME

18



Debarati Bhaumik, Diptish Dey and Subhradeep Kayal

methods, i.e., [P(¥; = Dwyogeuntrinsic = P(Vi = Dsuap/uimel- POIFS is calculated as the ratio of the number
of times SHAP or LIME estimate the model feature contribution sign incorrectly as compared to the model

#‘"CZ’;‘ZZ’; 24T 9% X 100. The ideal values of PUX
and POIFS are zero. The means of pyrqer, PUX, and POIFS over 50 randomly sampled instances from the
training dataset is computed and the process is repeated 10 times to estimate the KPIs for each MLM-group.
Following are the estimated KPIs with their standard deviations for the four MLM-groups (northeast, northwest,
southeast, southwest) for SHAP:

= p3HAP. (0.86 +0.07),(0.80 + 0.05),(0.80 + 0.09), and (0.82 4 0.06). Across all MLM-groups, SHAP
feature contribution magnitude ranks are not fully correlated with model intrinsic, implying that SHAP
occasionally produces incorrect feature contribution magnitudes.

=  PUXSHAP: (0.1 40.01),(0.09 + 0.005),(0.07 £ 0.003), and (0.09 £ 0.01). Across all MLM-groups,
there is a probability difference between model intrinsic and SHAP of 0.1 of an insured being in class 1,
which is moderately significant in this use-case.

»  POIFSSHAP: (9.2 + 1.7)%, (3.1 + 1.04)%, (7.2 + 2.06)%, and (2.6 + 1.36)%. Across all MLM-groups,
SHAP feature contribution signs do not completely match with model intrinsic signs, implying that there are
instances where SHAP estimates feature contribution signs incorrectly.

intrinsic method with the total number of features, i.e.,

The above statistics may fail to detect outliers, which is important in an audit. In Figure 1, two case examples of
incorrect explanations produced by SHAP are presented. In Figure 1-(a), it is observed that for an instance [age
= 35, BMI = 40, children = 3], in the group northwest, SHAP reports magnitude, order, and sign of feature
contributions incorrectly. Figure 1-(b) is another instance where SHAP reports magnitude and order incorrectly.

Input x2:[35 40 3] Input x4:(40. 30.69 2. ]

- shap - siAP

0,4 W Model Intrinsic Model intrinsic
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Figure 1: Comparison of SHAP contributions with model intrinsic in the MLM-group northwest

Similarly, following are KPIs with their standard deviations for the four MLM-groups (northeast, northwest,
southeast, and southwest) for LIME:

= pLME . (092 +0.01), (0.83 + 0.04), (0.72 + 0.03 ), and (0.80 + 0.02).
»  PUXMME: (0,06 + 0.006), (0.06 + 0.007), (0.06 + 0.005), and (0.05 + 0.008).
»  POIFSMME; (61 + 3.8)%, (60 + 4.0)%, (59 + 4.7)%, and (60 + 3.7)%.

For POIFSY™E /it is observed that LIME underperforms SHAP, and gets 60% of feature contribution signs wrong.
However, pLME 'is at par with SHAP, and LIME feature contribution magnitude ranks are not fully correlated
with model intrinsic. PUXY™F performs better than PUX SH74® for this use-case. This may vary per use-case.

6. Discussion and conclusions

To audit logistic regression multilevel models, an audit framework with a set of assessment KPIs is proposed in
Table 1. The framework focuses on the assessment of model assumptions, accuracy of predictions, group &
individual fairness, and accuracy of explainability methods. The KPls associated with each of these aspects are
computed by fitting a model to an open-source dataset, and are assessed through a traffic light RAG-score.

The KPI for model assumptions is a qualitative measure of the extent and depth of the assumptions as reported
in the technical documentation. The KPIs for assessing statistical properties are variance inflation factor (VIF),
Shapiro-Wilk test (SWT), and Breusch-Pagan test (BPT). The acceptable value for VIF is less than 1.0, for SWT and
BPT is p > 0.1. The KPIs for assessing accuracy of predictions are Area under the ROC curve (AUC-ROC) and F1-
score, which have both an acceptable range between [0.8, 1.0]. The KPIs for assessing group fairness are
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Statistical Parity (SP), Disparate Impact (DI), and Equalized-Odds (EqualOdds), with acceptable values of less than
0.2, between (0.8, 1.0], and less than 0.1, respectively. The KPls for assessing individual fairness are intra MLM-
group fairness (Diffina) and inter MLM-group fairness (Diffinda_mim), both having an acceptable values of less than
0.2. The KPIs for assessing accuracy of explainability methods are Spearman’s rank correlation coefficient
(Porder), Probability unexplained (PUX), and percentage of incorrect feature signs (POIFS), with acceptable
values between [0.8-1.0], less than 0.1, and between [10-0]%, respectively.

For the case-study, a green RAG-score was obtained for the following KPIs: AUC-ROC, F1-score, SP, DI, Diffind,
Diffina_mum, PUX for both SHAP and LIME, and POIFS for SHAP. An amber RAG-score was obtained for the
following KPIs: pyrqer for both SHAP and LIME. A red RAG-score was obtained for the following KPIs: VIF, SWT,
BPT, and POIFS for LIME. It is observed that even though the statistical properties of the model assumptions
are not satisfied, the model scores high on the accuracy of predictions. From an explainability perspective,
although it is observed that commonly used explainability methods occasionally produce incorrect feature
contribution magnitudes and that SHAP performs better than LIME, SHAP fails to detect outliers (Figure 1). When
stand-alone, these explainability methods fall short of providing trustworthy model output explanations. Also,
the need for multiple KPIs to assess each aspect is evident, concluding that no single KPI or method is conclusive
for any single aspect. For example, although the group fairness KPI, Disparate Impact, performs well, Equalized-
Odds underperforms.

Future work includes testing and eventually extending the framework to other classification models. Aspects
and sub-aspects, such as processes, IS/IT systems, and sensitivity, will also be explored. The framework presented
in Table 1, when fully detailed, provides a structured and actionable approach to auditing Al systems.
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