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Abstract: Without a doubt, the World Wide Web (WWW) has already altered the way we share knowledge.  The 
exploitation of the web is one of the biggest challenges in the area of intelligent information management. The Semantic 
Web was presented to ease this situation by taking the WWW into a distributed global system for knowledge 
representation and computing. In this work, we study action rule mining in the semantic web data and aim to assist users 
in uncovering previously unknown and potentially useful workable strategies.  We present rule-based action rules and 
object-based action rules for extracting actionable patterns from a large graph dataset without the extra step of converting 
graph data into transaction data.   
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1. Introduction 
Semantic web data is a vital repository for many applications, and its volume is continuously growing.   It has 
become a rich source of useful data for developing approaches to make machines capable of reasoning from 
unstructured or semi-structured data and providing personalized answers.  In fact, in just twenty years, we 
now have devices like Amazon’s Alexa that utilize the Semantic web to perform tasks like booking a table at 
our favorite restaurants. Semantic Web technologies have made significant advancements.  Information can 
be processed faster and at a finer level of access and semantic granularity that can be shared via web services.  
At the same time, new challenges arise in knowledge discovery and presentation.  A new way of reasoning the 
meaning of content on the web is needed. 
 
Finding actionable insights from data has always been a difficult task.  Action Rule Mining (ARM) (Raś & 
Wieczorkowska , 2000), (Ras & Tsay , 2003) is one of the most promising technologies for extracting patterns 
that recommends actions leading to desirable outcomes, by giving only previously acquired data.  ARM is the 
process of finding workable strategies for transiting objects from an undesirable state into a desirable state. 
Specifically, it focuses on the usability of mined patterns.  An action rule is represented as [(X,α→β) ⇒ 
(Y,φ→ψ)], where (X,α→β) represents a formulated specific action, (Y,φ→ψ) is the estimated effect obtained 
from the action, → means change, and ⇒ means imply.  It summarizes two populations P1 and P2 having 
properties {(X,α), (Y,φ)} and {(X, β), (Y, ψ)}, respectively.  P1 can be influenced by actions (X,α→β), the value of 
feature X changes from α to β, toward a higher preferable population P2.  This rule presentation is in a 
symbolic notation, which is very amenable to inspection and interpretation. This characteristic allows business 
end users and analysts to understand the underlying cause-effect in data, and takes action based upon them.  
ARM has been demonstrated to be of significant value in a variety of real-world data mining applications, such 
as customer attrition (Tarnowska & Raś, 2018), artwork price strategy (Powell, et al., 2020), reduction of 
hospital readmission (Mardini & Raś, 2019), etc. ARM techniques range from a post-process analysing rule 
manner to a process scrutinizing row data way. These techniques are automatic methods for locating 
important facts for influencing objects’ behaviors from structured data.   
 
In 2022, 2.5 quintillion bytes of data are created every day.  About 80 percent of all generated data are 
unstructured data.  As the forms and volume of data evolved, the task of unearthing valuable actionable 
knowledge for decision-making has become even more challenging. In the existing literature, various ARM 
approaches have been discussed, but these methods construct the action rules from either an IF-THEN rule set 
or a structured dataset.  In this work, we study action rule mining in the semantic web data and aim to assist 
users in uncovering previously unknown and potentially useful cause-effect associations.  The structure of this 
paper is organized as follows. The previous approaches to finding semantic association in the Semantic Web 
are discussed in Section 2.  In Section 3, the theoretical foundation for semantic association is presented.  The 
proposed semantic action rules and their interestingness measurements are introduced in Section 4.  In 
Section 5, our conclusions are presented. 
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2. Related work  
In the late 1990s and early part of the twenty-first century, the Semantic Web was presented to take the 
World Wide Web (WWW) beyond keyword search, and develop it into a distributed global system for 
knowledge representation and computing (Berners-Lee, et al., 2001)(Berendt, et al., 2003).  Such a system is 
built by using ontologies and globally unique identifiers to weave together related data and services.  
Unstructured and semi-structured data is transformed into a “Web of Data”, in which both nodes and links are 
uniquely identified by Uniform Resource Identifiers (URI).  The representation of web-information is regulated 
by standardized syntax, common vocabularies and knowledge, and a logical language.  Basically, ontological 
terms are explicitly added to web data to provide logical pieces of meaning that can be automatically 
manipulated by machines.  Meaning is expressed by Resource Description Framework (RDF), which encodes it 
in a set of triples (subject-predicate-object).  The triples of RDF form webs of information about related things.   
 
For Semantic Association, most studies utilized association rules to support the knowledge acquisition process 
by defining metadata information (Savasere, et al., 1995) (Völker & Niepert , 2011) (Jiang & Tan, 2006).  In the 
2011 Billion Triple Challenge, to discover common usage patterns in Linked Open Data, both positive and 
negative association rule mining were used.  The latter compared these patterns to existing schema definitions 
to indicate potential modeling errors (Jimenez & Goodman, 2012). Based on a predefined mining pattern, 
complex semantic data can be converted into transactions before using an association rule method to learn 
the causal relations in the medical domain (Kochut & Janik, 2007).  Closed itemset mining was utilized to 
extract the shared conceptualization from a folksonomy, which is the core data structure of a social resource 
sharing system (i.e., Flicker) (Lorey, et al., 2011).   One approach was using generalized association rules to 
mine frequent patterns from large sets of RDF triples.  Other studies use generalized association rules to 
analyze statistical information about the linguistic data for enriching ontology (Maedche & Staab, 2000), for 
detecting a context of schema/ontology matching (Ramezani, et al., 2014), and semantic annotations.  In most 
of the cases, a generalized association analysis is utilized to facilitate engineering ontologies (Srikant & 
Agrawal, 1995), ontology matching (Ramezani, et al., 2014), building property axioms (Kiefer, et al., 2008) and 
schema analysis (Savasere, et al., 1995).  Other cases use them for optimizing RDF storage, improving query 
processing, semantic annotations, and enhancing information for related recommendations.   
 
Class association rules (Liu, et al., 1998) are a special subset of association rules whose consequences are 
restricted to predefined target labels. This makes mining associations more applicable and practical in web-
scale data.  Like frequent closed itemsets in the association rule mining for reducing the number of redundant 
discovered rules, closed factor-sets can be used to generate class association rules.   Beside support and 
confidence, other interestingness measures lift and coverage are necessary to filter out trivial patterns.  In 
addition, we believe that it is vital for a user to be involved in the mining process in order to extract 
meaningful rules from a large dataset.  

3. Semantic Association  

An information system is used for representing knowledge U = {E ∪ R ∪  L}, where E is an entity, R is a 
relationship, and L is a literal.  An entity is any tangible and intangible object in the world, such as a composer, 
an author, a song, or a novel.  A relationship is an association between entities, for example a particular 
relationship writes.  A literal is any value of an entity, for example Johann Sebastian Bach.  Within the RDF data 
model, information is expressed as a set of binary propositions and is represented by facts denoted as triples 
consisting of a subject, a predicate, and an object.  A RDF triple s is represented as s ∈ { E, R, (E ∪ L)}. Its first 
component (the subject) stands in the relation given by the second component (the predicate) with the third 
component (the object), as in {composer, writes, song} and {author, writes, novel}.  The terms used in an RDF 
tuple are relative URLs in a pair of angle brackets and literals in a pair of quotation marks.   Literals are typed 
data values that can be used and located at the object position.  Each triple basically established a link 
between the entity recognized by the subject with the entity identified by the object via the predicate (Auer, 
et al., 2011).    

3.1 Semantic Association rules 

Association rules are applicable in analysis of RDF stores, as every edge of the graph has a unique combination 
of vertex and edge labels.  Analogous to traditional transaction data, the subject s of a triple tuple can be 
considered as a “transaction ID” and the combination of its corresponding predicate p and object o can be 
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seen as an “attribute-value” pair.  Like an item, each pair of predicate p and its corresponding object o can be 
called a Factor, i.e.,  f ={ p o }.  Let F= { fi | i = 1, …, n } is a set of distinct factors in the dataset.  Any set of 
factors in F is called a factor-set.  With these mappings, we can treat a RDF store U as  a collection of m data 
cases,  U ={ci | i = 1, …, m}. Each case ci has a unique subject ID (sid) and contains a subset of factors in F, i.e., ci 

= {sidi, 
jif | j = 1, …, q}.  

By a RDF store, we mean any information system U = {C, P}, where: 

 C is a nonempty and finite set of cases 

 P is a nonempty and finite set of properties, . i.e. p : U→Op  is a function for any p ∈ P where Op is called 
the domain of p.   

Elements of U are called cases. In this section, for the purpose of clarity, cases are interpreted as patients.  
Properties P are interpreted as attributes such as diagnosis made by a doctor, characteristic of a tumor status, 
etc.  As we mentioned before, a pair of property-value is called a Factor.   
 
A pattern X is a subset of a case, X ⊆ U. A pattern with k factors is called k-pattern. The support of a pattern X 
is the ratio of the number of cases containing X to the number of all cases in D, denoted by sup(X). An 
Association Rule is an implication of the form X  Y, where X ≠ ∅, X ⊆ F, Y ⊆ F, X ∩ Y = ∅.  X is called 
antecedent and Y is a called the consequent of the rule. XY is a frequent factor-set.  Strong association rules 
are derived from frequent factors.  The support of the rule is as sup(X∪Y) and the confidence of the rule is 
defined as conf(XY) = sup(X∪ Y)/sup(X).  
 
There is an old saying that 99% of the web information is useless to 99% of web users. Instead of searching the 
entire data space for every possible association rule, an alternative way of finding relevant materials from the 
Web is to set a restriction on the search focus according to the user’s preference.  Adding a constraint to limit 
the factors that can appear on the consequence of the rule is called a Class Association Rule (CAR).  Only a 
small portion of data space is required for finding such rules. The computation complexity and the number of 
trivial rules could be considerably reduced. 

3.2 Semantic Class Association rules 

A decision table consists of a set of cases where each case is described by a set of properties. Properties are 
partitioned into premise and target. Additionally, we assume that the set of premises is portioned into stable 
features and flexible features.  For simplicity, we assume that there is only one target property. For a medical 
dataset, “diagnosis” can be the target attribute.  Its domain is defined as a set of literals.  The target attribute 
classifies cases with respect to the diagnosis by a physician at a hospital.  Age of a patient is an example of a 
stable attribute. The treatment on a patient is an example of a flexible attribute as the physician can adjust it. 
 
Let U = {C, P} be an information system. If there exists Ps , Pf, Pt ⊆ P, such that Ps ∩ Pf ∩ Pt = ∅  and  Ps ∪ Pf ∪ Pt   
=  P, then U is called a decision table.   A decision table is denoted it as U = {C, Ps ∪ Pf ∪ Pt  }, where C is a 
nonempty and finite set of cases, Pt  is a distinguished property called a target class, Ps is called stable premise 
properties, and Pf is called flexible premise properties.  The set of factors F in U can be partitioned into premise 
factors Fc and target factors Ft.  Ft is a targeted predicate pt with a set of its associated distinct object values, Ft 
= { pt, 

jto | j = 1, …, q}.  Assume that U = {(c1, c2, c3, c4, c5, c6), (A , B) ∪ ( T) } is a decision table  represented by 

Table I.  It consists of 6 cases {c1, c2, c3, c4, c5, c6}. The predicates in {A, B} are premise one and predicate T is the 
target predicate.  The minimum support sup(r) is 15% and the minimum confidence conf(r) for rules is 60%.  

Table 1: Example of a decision RDF store 

S P O 
c1 B b1 
c1 A a3 
c1 T t2 
c2 A a2 
c2 A a3 
c2 T t1 
c2 B b3 
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S P O 
c3 B b3 
c3 A a3 
c3 T t1 
c4 A a3 
c4 T t1 
c5 B b1 
c5 T t2 
c6 B b3 
c6 T t1 

A decision system U classifies a set of cases so that for each object there exists a class label assigned to it.   A 
class association rule r in U can be expressed as: r =  X Y, where X ≠ ∅, X ⊆ FC, Y ∈ Ft, X ∩ Y = ∅.   The 
antecedent X of the rule is a set of premise factors  and the consequent Y is the target used to characterize 
interesting segments of the populations and must be specified by a user.  Referring back to the example, four 
strong class association rules are constructed.   These rules and their support and confidence are presented in 
Table 2. 

Table 2: A set of Class Association rules with their interestingness measures. 

Class Association Rule sup(r) conf(r) 
(B, b3)  (T, t1) 50.0% 75.0% 

(A, a3) (T, t1) 50.0% 75.0% 

(B, b1)  (T, t2) 33.3% 100.0% 

(B, b3) (A, a3)  (T, t1) 33.3% 100% 

4. Semantic action rules  
The basic principle of action rule mining is a process of learning a function that maps one class of objects into 
another class by changing values of some conditional features describing them.  The conditional features are 
divided into stable and flexible.  The goal of the learning process is to create a transition model, for objects in a 
decision table, which suggests possible changes that can be made within values of some flexible attributes to 
influence these objects the way user wants.  A decision system S classifies a set of objects so that for each 
object there exists a class label assigned to it.  Action rule mining is the process of showing what changes in 
values of some of the flexible attributes for a given class of objects are needed in order to shift them from one 
decision class into another more desired one.   
 
There are two possible approaches for building action rules, object-based and rule-based.  In object-based 
action rules, action rules are directly constructed from the decision table by taking all possible pair 
combinations of flexible items.  In Rule-based action rules, action rules are built from certain pairs of class 
association rules extracted earlier from the same decision table.  Several definitions related to action rules, 
support and confidence the rules from structured data are proposed in [Tsay and Ras 2005].   They have been 
extended for an RDF store and listed in the sections below. 

4.1 Object-based action rules  

By action rule r in R we mean an expression   
 

r =[[( Ps1 = ω1) ∧ (Ps2 = ω2) ∧ …∧(Psm = ωm)]∧ (Pf1, α1→ β1)∧ (Pf2, α2 → β2)∧…∧ (Pfn, αn → βn)] ⇒[( Pt, k1 → 
k2)],  

 
where { Pf1, Pf2, …, Pfn } are flexible premise and {Ps1, Ps2,…, Psm} are stable in R.   
 
Additionally, we assume that ωi ∈ Dom(Psi),  i=1,2,…,m  and  αi, βi ∈ Dom(Pfi),  i=1,2,…,n.   The term  (Psi = ωi)  
states that  the value of  the attribute  Psi  is equal to  ωi, and   (Pfj, αj → βj)  means that value of the attribute Pfj  
has been changed from αj to β j. 
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We say that  object   x ∈ U  supports an  action rule  r  in  R,  if  there is an object  y ∈ U  such that:  (∀j ≤ n)[ [Pfj 

(x) = αj]  ∧ [Pfj (y) = βj]],  (∀i ≤ m) [Psi (x) = Psi (y) = ωi], Pt(x) = k1  and  Pt(y) = k2.  
 
An action rule is meaningful only if it contains at least one flexible feature.  If we apply the left hand side of an 
action rule to object x, then the rule basically says: the values ωi of stable attributes Psi (i=1,2,…,m) have to 
remain unchanged in x; if we change the value of attribute Pfj in x from αj to βj, for  j=1,2,…, n, then the object x 
which is in the class k1 is expected to transition to class k2.  
 
From the point of transition, we are not targeting all possible cases on the decisional part of changes.  Since 
some states are more preferable than other states, we should basically ask users to specify in what direction 
they prefer to see the changes.  On the conditional part of action rules, we have no information to verify if the 
rule is applicable.  If the domain expert can supply prior knowledge of a given domain, then some of the rules 
cannot be applied. For example, the size of a tumor’s growth can not increase when the status of a patient has 
transitioned from sick to becoming cured.  Therefore, some combinations can be ruled out automatically just 
by having an expert who is involved in the application domain.   
 
Since an action rule is constructed by comparing the profiles of two sets of targeted objects, we can assume 
that there are two patterns associated with each action rule, a left hand side pattern rL and a right hand side 
pattern rR.  There are three objective measures of rule interestingness including Left Support, Right Support, 
and confidence.  
 
The Left Support defines the domain of an action rule which identifies objects in U on which the rule can be 
applied.  The larger its value is, the more interesting the rule will be for a user. The left hand side pattern of 
action rule   
 

 r  =[[( Ps1 = ω1) ∧ (Ps2 = ω2) ∧ …∧ (Psm = ωm)]∧ (Pf1, α1→ β1)∧ (Pf2, α2 → β2)∧…∧ (Pfn, αn → βn)] ⇒[( PT, 
k1 → k2)], 

is defined as the set rL =VL∪{k1}, where VL = { ω1, ω2,…, ωm, α1, α2,…, αn}.  The domain Dom(VL) of the left 
pattern rL is a set of objects in U  that exactly match VL.  Card[Dom(VL)] is the number of objects in that domain.  
Card[Dom(rL)] is the number of objects in U  that exactly match rL  and Card[U] is the total number of objects in 
the decision system U.  By the left support supL of an action rule r, we mean supL(r) = Card[Dom(RL)] /Card[U].  
 
The Right Support shows how well the rule is supported by objects in U from the preferable decision class. The 
higher its value is, the stronger case of the transition effect will be.  The pattern rR  of an action rule r  is 
defined as  rR= VR∪{k2}, where VR = {ω1, ω2,…, ωm, β1, β2,…, βn}.    
 
By domain Dom(VR) we mean  a set of objects matching VR.  Card[Dom(rR)]  is the number of objects that 
exactly match  rR.  By the right support supR of action rule  r, we mean supR(r) = Card[Dom(rR)] /Card[U]. 
 
The confidence of action rule r shows the success measure in transforming objects from a lower preference 
decision class to a higher one.  The support of action rule r in R, denoted by Sup(r), is the same as the left 
support supL(r) of action rule r.  This is the percentage of objects that need to be changed into a more 
preferable class.  By the confidence of the action rule r in R, denoted by Conf(r), we mean  
 
Conf(r)=(Card[Dom(rL)]/Card[Dom(VL)])∗(Card[Dom(rR)]/Card[Dom(VR)]).   
 
Referring back to the example, we assume that attribute A is stable, attribute B is flexible, and T is the target 
attribute.  The values of attribute T are “t1” and “t2” in U. The preferable change is from t1 to t2.  The minimum 
support for both supR and supL is 15%, and the minimum confidence for rules is 60%.  Two action rules have 
been constructed.  These rules and their support and confidence are presented in Table 3. 

Table 3. A set of action rules with their interestingness measures. 

Action Rule supL(r) supR(r) conf(r) 

(B, b3 → b1) ⇒ (T, t1→ t2) 50.0% 33.3% 75.0% 

(A=a3) ∧ (B, b3 → b1) ⇒ (T, t1→ t2) 33.3% 33.3% 100.0% 
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4.2 Rule-based action rules mining 

Let us assume that objects are described by l premises and L(r) = { Pf1, Pf2, …, Pfn }. We say that objects x 
supports the action rule r in U, if there are objects y in U and two class association rules r1, r2 are extracted 
from U such that: 

  Pt(r1)=k1, Pt(r2)=k2 and  k1≤ k2 

 (∀a ∈ [Ps ∩ L(r1) ∩ L(r2)]) [a(r1) = a(r2)] 

 (∀i ≤ m){∀ei ∈ [Ps ∩[ L(r2) - L(r1)]]} [ei(r2) = ui]  

 (∀i ≤ n){∀bi ∈ [Pf ∩ L(r1) ∩ L(r2)]} [bi(r1) = vi ] & [bi (r2) = wi] 

  (∀i ≤ o){∀fi ∈ [Pf ∩ [L(r2) - L(r1)]]} [fi (r2) = ci] 

 objects x supports rule r1 

 objects y supports rule r2 

Let Ps ∩ L(r1) ∩ L(r2) = A. By rule-based action rule on x∈U we mean a statement: 

 
{∏ [a = a(r1): a∈ A]∧ (e1 = u1) ∧ (e2 = u2) ∧ …∧ (em = um) ∧ (b1, v1→ w1) ∧ (b2, v2 → w2) ∧…∧ (bn, vn → 
wn) ∧ (f1, →  c1) ∧ (f2, →  c2) ∧ … ∧ (fr, →  co)}(x)  ⇒ [(Pt, k1 → k2)](x).   

where a = a(r1) denotes that the values of the common stable attributes for both class association 
rules (r1 and r2) are the same, (ei = ui) denotes the value of the ith stable attribute in the rule r2 not in 
the rule r1 is equal to ui, (bj, vj → wj)  means that the value of the jth flexible premise b has been 
changed from vj to wj, and  (fl, → cl)  indicates that the value of the lth flexible feature has to be 
changed from an arbitrary value to c for handling correlated flexible features.  When attributes are 
correlated, the change of one attribute value will influence the change of another value.  

 
If we apply the left hand side of the rule on object x and this rule basically says: if we change the value of 
attribute Pf1 from v1 to w1, change the value of attribute Pf2 from v2 to w2, …, and change the value of attribute 
Pfn from vn to wn for objects x, then, the object which is in class k1 is supposed to transition to class k2.  Clearly, 
to have this kind of action rules makes sense.  A pair of class association rules extracted from the RDF store 
should support an action rule.  One class association rule basically links the property of v1, v2, …, vn and the 
property of k1.  Then we have another class association rule that links the property of β1, β2, …, βp  and the 
property of k2.  By definition, an action rule must have this kind of support to be valid. 
 
By the support of action rule r, denoted by Sup(r), we mean the set of all objects in U supporting r.  In other 
words, this set of all objects in U supporting r has the property (a1 = u1) ∧ (a2 = u2) ∧ …∧ (aq = uq) ∧ (b1 = v1) ∧ 
(b2 = v2) ∧…∧ (bp = vp) ∧ (d = k1).   
 
By the confidence of R in S, denoted by Conf(r), we mean  
 
 [Sup(r)/Sup(L(r))] ×[Conf(r2)] 
 
To find the confidence of (r1, r2) extended action rule R in S, we divide the number of objects supporting (r1, r2) 
extended action rule in S by the number of objects supporting left hand side of (r1, r2) extended action rule 
times the confidence of the second classification rules r2 in S. 

5. Conclusion and future work 
As we are witnessing the increasing trend in both successful application of action rule mining and the 
spreading of datasets using semantic linked data, we see that applying action rule mining to semantic web 
data can have tremendous potential for knowledge extraction from different data source.  In this paper, rule-
based action rules and object-based action rules with their interestingness measurements were defined for 
semantic web data.  We plan to extend our previous work SAG (Semantic Association Generator) (Tsay, et al., 
2015) on building actionable patterns from large-scale datasets.  
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