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Abstract: Without a doubt, the World Wide Web (WWW) has already altered the way we share knowledge. The
exploitation of the web is one of the biggest challenges in the area of intelligent information management. The Semantic
Web was presented to ease this situation by taking the WWW into a distributed global system for knowledge
representation and computing. In this work, we study action rule mining in the semantic web data and aim to assist users
in uncovering previously unknown and potentially useful workable strategies. We present rule-based action rules and
object-based action rules for extracting actionable patterns from a large graph dataset without the extra step of converting
graph data into transaction data.
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1. Introduction

Semantic web data is a vital repository for many applications, and its volume is continuously growing. It has
become a rich source of useful data for developing approaches to make machines capable of reasoning from
unstructured or semi-structured data and providing personalized answers. In fact, in just twenty years, we
now have devices like Amazon’s Alexa that utilize the Semantic web to perform tasks like booking a table at
our favorite restaurants. Semantic Web technologies have made significant advancements. Information can
be processed faster and at a finer level of access and semantic granularity that can be shared via web services.
At the same time, new challenges arise in knowledge discovery and presentation. A new way of reasoning the
meaning of content on the web is needed.

Finding actionable insights from data has always been a difficult task. Action Rule Mining (ARM) (Ras &
Wieczorkowska , 2000), (Ras & Tsay , 2003) is one of the most promising technologies for extracting patterns
that recommends actions leading to desirable outcomes, by giving only previously acquired data. ARM is the
process of finding workable strategies for transiting objects from an undesirable state into a desirable state.
Specifically, it focuses on the usability of mined patterns. An action rule is represented as [(X,a—/f) =
(Y, )], where (X,a—p) represents a formulated specific action, (Y,p—) is the estimated effect obtained
from the action, — means change, and = means imply. It summarizes two populations P1 and P> having
properties {(X,a), (Y,9)} and {(X, ), (Y, ¥)}, respectively. P: can be influenced by actions (X,a—/f), the value of
feature X changes from « to S, toward a higher preferable population P.. This rule presentation is in a
symbolic notation, which is very amenable to inspection and interpretation. This characteristic allows business
end users and analysts to understand the underlying cause-effect in data, and takes action based upon them.
ARM has been demonstrated to be of significant value in a variety of real-world data mining applications, such
as customer attrition (Tarnowska & Ras, 2018), artwork price strategy (Powell, et al., 2020), reduction of
hospital readmission (Mardini & Ras, 2019), etc. ARM techniques range from a post-process analysing rule
manner to a process scrutinizing row data way. These techniques are automatic methods for locating
important facts for influencing objects’ behaviors from structured data.

In 2022, 2.5 quintillion bytes of data are created every day. About 80 percent of all generated data are
unstructured data. As the forms and volume of data evolved, the task of unearthing valuable actionable
knowledge for decision-making has become even more challenging. In the existing literature, various ARM
approaches have been discussed, but these methods construct the action rules from either an IF-THEN rule set
or a structured dataset. In this work, we study action rule mining in the semantic web data and aim to assist
users in uncovering previously unknown and potentially useful cause-effect associations. The structure of this
paper is organized as follows. The previous approaches to finding semantic association in the Semantic Web
are discussed in Section 2. In Section 3, the theoretical foundation for semantic association is presented. The
proposed semantic action rules and their interestingness measurements are introduced in Section 4. In
Section 5, our conclusions are presented.
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2. Related work

In the late 1990s and early part of the twenty-first century, the Semantic Web was presented to take the
World Wide Web (WWW) beyond keyword search, and develop it into a distributed global system for
knowledge representation and computing (Berners-Lee, et al., 2001)(Berendt, et al., 2003). Such a system is
built by using ontologies and globally unique identifiers to weave together related data and services.
Unstructured and semi-structured data is transformed into a “Web of Data”, in which both nodes and links are
uniquely identified by Uniform Resource Identifiers (URI). The representation of web-information is regulated
by standardized syntax, common vocabularies and knowledge, and a logical language. Basically, ontological
terms are explicitly added to web data to provide logical pieces of meaning that can be automatically
manipulated by machines. Meaning is expressed by Resource Description Framework (RDF), which encodes it
in a set of triples (subject-predicate-object). The triples of RDF form webs of information about related things.

For Semantic Association, most studies utilized association rules to support the knowledge acquisition process
by defining metadata information (Savasere, et al., 1995) (Volker & Niepert , 2011) (Jiang & Tan, 2006). In the
2011 Billion Triple Challenge, to discover common usage patterns in Linked Open Data, both positive and
negative association rule mining were used. The latter compared these patterns to existing schema definitions
to indicate potential modeling errors (Jimenez & Goodman, 2012). Based on a predefined mining pattern,
complex semantic data can be converted into transactions before using an association rule method to learn
the causal relations in the medical domain (Kochut & Janik, 2007). Closed itemset mining was utilized to
extract the shared conceptualization from a folksonomy, which is the core data structure of a social resource
sharing system (i.e., Flicker) (Lorey, et al., 2011). One approach was using generalized association rules to
mine frequent patterns from large sets of RDF triples. Other studies use generalized association rules to
analyze statistical information about the linguistic data for enriching ontology (Maedche & Staab, 2000), for
detecting a context of schema/ontology matching (Ramezani, et al., 2014), and semantic annotations. In most
of the cases, a generalized association analysis is utilized to facilitate engineering ontologies (Srikant &
Agrawal, 1995), ontology matching (Ramezani, et al., 2014), building property axioms (Kiefer, et al., 2008) and
schema analysis (Savasere, et al., 1995). Other cases use them for optimizing RDF storage, improving query
processing, semantic annotations, and enhancing information for related recommendations.

Class association rules (Liu, et al., 1998) are a special subset of association rules whose consequences are
restricted to predefined target labels. This makes mining associations more applicable and practical in web-
scale data. Like frequent closed itemsets in the association rule mining for reducing the number of redundant
discovered rules, closed factor-sets can be used to generate class association rules. Beside support and
confidence, other interestingness measures lift and coverage are necessary to filter out trivial patterns. In
addition, we believe that it is vital for a user to be involved in the mining process in order to extract
meaningful rules from a large dataset.

3. Semantic Association

An information system is used for representing knowledge U = {E U R U L}, where E is an entity, R is a
relationship, and L is a literal. An entity is any tangible and intangible object in the world, such as a composer,
an author, a song, or a novel. A relationship is an association between entities, for example a particular
relationship writes. A literal is any value of an entity, for example Johann Sebastian Bach. Within the RDF data
model, information is expressed as a set of binary propositions and is represented by facts denoted as triples
consisting of a subject, a predicate, and an object. A RDF triple s is represented as s € { E, R, (E U L)}. Its first
component (the subject) stands in the relation given by the second component (the predicate) with the third
component (the object), as in {composer, writes, song} and {author, writes, novel}. The terms used in an RDF
tuple are relative URLs in a pair of angle brackets and literals in a pair of quotation marks. Literals are typed
data values that can be used and located at the object position. Each triple basically established a link
between the entity recognized by the subject with the entity identified by the object via the predicate (Auer,
etal, 2011).

3.1 Semantic Association rules

Association rules are applicable in analysis of RDF stores, as every edge of the graph has a unique combination
of vertex and edge labels. Analogous to traditional transaction data, the subject s of a triple tuple can be
considered as a “transaction ID” and the combination of its corresponding predicate p and object o can be

94



Li-Shiang Tsay

seen as an “attribute-value” pair. Like an item, each pair of predicate p and its corresponding object o can be
called a Factor, i.e., f={po}. LetF={fi|i=1, .. n}is a set of distinct factors in the dataset. Any set of
factors in Fis called a factor-set. With these mappings, we can treat a RDF store U as a collection of m data
cases, U={ci | i=1, .., m}. Each case ci has a unique subject ID (sid) and contains a subset of factors in F, i.e., ¢i

= {sid, fi/ lj=1,..q}
By a RDF store, we mean any information system U = {C, P}, where:
= (Cis anonempty and finite set of cases

=  Pis anonempty and finite set of properties, . i.e. p : U—>0p is a function for any p € P where O, is called
the domain of p.

Elements of U are called cases. In this section, for the purpose of clarity, cases are interpreted as patients.
Properties P are interpreted as attributes such as diagnosis made by a doctor, characteristic of a tumor status,
etc. As we mentioned before, a pair of property-value is called a Factor.

A pattern Xis a subset of a case, X — U. A pattern with k factors is called k-pattern. The support of a pattern X
is the ratio of the number of cases containing X to the number of all cases in D, denoted by sup(X). An
Association Rule is an implication of the form X 2> Y, where X # &, X c F, YT F, XN Y =. Xis called
antecedent and Y is a called the consequent of the rule. XY is a frequent factor-set. Strong association rules
are derived from frequent factors. The support of the rule is as sup(XUY) and the confidence of the rule is
defined as conf(X=>Y) = sup(XU Y)/sup(X).

There is an old saying that 99% of the web information is useless to 99% of web users. Instead of searching the
entire data space for every possible association rule, an alternative way of finding relevant materials from the
Web is to set a restriction on the search focus according to the user’s preference. Adding a constraint to limit
the factors that can appear on the consequence of the rule is called a Class Association Rule (CAR). Only a
small portion of data space is required for finding such rules. The computation complexity and the number of
trivial rules could be considerably reduced.

3.2 Semantic Class Association rules

A decision table consists of a set of cases where each case is described by a set of properties. Properties are
partitioned into premise and target. Additionally, we assume that the set of premises is portioned into stable
features and flexible features. For simplicity, we assume that there is only one target property. For a medical
dataset, “diagnosis” can be the target attribute. Its domain is defined as a set of literals. The target attribute
classifies cases with respect to the diagnosis by a physician at a hospital. Age of a patient is an example of a
stable attribute. The treatment on a patient is an example of a flexible attribute as the physician can adjust it.

Let U = {C, P} be an information system. If there exists Ps, P, PrC P, such that Ps N Pr\ Pt= &'and Ps U PrU Pt
= P, then U is called a decision table. A decision table is denoted it as U = {C, Ps U PfuU P: }, where Cis a
nonempty and finite set of cases, P: is a distinguished property called a target class, Psis called stable premise
properties, and Pris called flexible premise properties. The set of factors Fin U can be partitioned into premise
factors Fc and target factors F:. F:is a targeted predicate p: with a set of its associated distinct object values, F:

={py o, | j=1, .., g} Assume that U ={(cs, ¢z ¢3, ¢4, C5 cs), (A, B) U ( T) }is a decision table represented by

Table I. It consists of 6 cases {c1, ¢z, €3, ¢4, Cs, Cs}. The predicates in {A, B} are premise one and predicate T is the
target predicate. The minimum support sup(r) is 15% and the minimum confidence conf{(r) for rules is 60%.

Table 1: Example of a decision RDF store

S P 0
C1 B bl
C1 A a3
C1 T t
C2 A az
C2 A a3
C T t
C2 B b3
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S P (0]
C3 B b3
C3 A a3
C3 T t;
Cs4 A a3
Ca T t1
Cs B bl
Cs T t
Ce B b3
(o3 T t;

A decision system U classifies a set of cases so that for each object there exists a class label assigned to it. A
class association rule r in U can be expressed as: r= X2 Y, where X # 3, X< Fo Ye Fb XN Y=, The
antecedent X of the rule is a set of premise factors and the consequent Y is the target used to characterize
interesting segments of the populations and must be specified by a user. Referring back to the example, four
strong class association rules are constructed. These rules and their support and confidence are presented in
Table 2.

Table 2: A set of Class Association rules with their interestingness measures.

Class Association Rule sup(r) conflr)
(B, bs) 2> (T, t1) 50.0% 75.0%
(A, az)> (T, ta) 50.0% 75.0%
(B, b1) 2> (T, t2) 33.3% 100.0%

(B, bs) (A, a3) 2 (T, t1) 33.3% 100%

4. Semantic action rules

The basic principle of action rule mining is a process of learning a function that maps one class of objects into
another class by changing values of some conditional features describing them. The conditional features are
divided into stable and flexible. The goal of the learning process is to create a transition model, for objects in a
decision table, which suggests possible changes that can be made within values of some flexible attributes to
influence these objects the way user wants. A decision system S classifies a set of objects so that for each
object there exists a class label assigned to it. Action rule mining is the process of showing what changes in
values of some of the flexible attributes for a given class of objects are needed in order to shift them from one
decision class into another more desired one.

There are two possible approaches for building action rules, object-based and rule-based. In object-based
action rules, action rules are directly constructed from the decision table by taking all possible pair
combinations of flexible items. In Rule-based action rules, action rules are built from certain pairs of class
association rules extracted earlier from the same decision table. Several definitions related to action rules,
support and confidence the rules from structured data are proposed in [Tsay and Ras 2005]. They have been
extended for an RDF store and listed in the sections below.

4.1 Object-based action rules

By action rule rin R we mean an expression

r=[[( Ps1 = wi1) A (Ps2 = @2) A .. \(Psm = @m)]A (Pr1, c1—> Pi)A (Pr2, €2 — o)A (Prn, an — )] =[( Pt ki —
k)],

where { Ps1, Py, ..., P } are flexible premise and {Psz, Psz,..., Psm} are stable in R.
Additionally, we assume that i € Dom(Ps)), i=1,2,..,m and a;, i € Dom(Ps), i=1,2,..,n. The term (Psi= @)

states that the value of the attribute Psi is equal to i, and (Pg, o — B;) means that value of the attribute Py
has been changed from o, to S;.
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We say that object x € U supports an actionrule r in R, if thereis an object y € U such that: (Vj <n)[ [Ps
(x) = ag] A[Psi(y) =Bl (Vi <m)[Psi(x)=Psi(y) = wi], Pe(x) = ka and Pi(y) = k.

An action rule is meaningful only if it contains at least one flexible feature. If we apply the left hand side of an
action rule to object x, then the rule basically says: the values @ of stable attributes Ps; (i=1,2,...,m) have to
remain unchanged in x; if we change the value of attribute Psin x from oy to B, for j=1,2,..., n, then the object x
which is in the class ki1 is expected to transition to class k.

From the point of transition, we are not targeting all possible cases on the decisional part of changes. Since
some states are more preferable than other states, we should basically ask users to specify in what direction
they prefer to see the changes. On the conditional part of action rules, we have no information to verify if the
rule is applicable. If the domain expert can supply prior knowledge of a given domain, then some of the rules
cannot be applied. For example, the size of a tumor’s growth can not increase when the status of a patient has
transitioned from sick to becoming cured. Therefore, some combinations can be ruled out automatically just
by having an expert who is involved in the application domain.

Since an action rule is constructed by comparing the profiles of two sets of targeted objects, we can assume
that there are two patterns associated with each action rule, a left hand side pattern r. and a right hand side
pattern rr. There are three objective measures of rule interestingness including Left Support, Right Support,
and confidence.

The Left Support defines the domain of an action rule which identifies objects in U on which the rule can be
applied. The larger its value is, the more interesting the rule will be for a user. The left hand side pattern of
action rule

r =[[( Ps1 = 1) A (Ps2 = @2) A ... (Psm = &m)]A (Pr1, a1—> Pi)A (Pra, a2 = o)A (Prn, an — )] =( Pr,
ki = k2)],

is defined as the set r. =Viu{k:}, where Vi = { w1, @3,..., &m, a1, aa,..., an}. The domain Dom(V.) of the left
pattern r. is a set of objects in U that exactly match V.. Card[Dom(V.)] is the number of objects in that domain.
Card[Dom(r:)] is the number of objects in U that exactly match r. and Card[U] is the total number of objects in
the decision system U. By the left support suplL of an action rule r, we mean suplL(r) = Card[Dom(R.)] /Card[U].

The Right Support shows how well the rule is supported by objects in U from the preferable decision class. The
higher its value is, the stronger case of the transition effect will be. The pattern rr of an action rule r is
defined as rr= VrU{k2}, where Vi = {1, @z,..., &m, B, [2,..., o}

By domain Dom(Vk) we mean a set of objects matching Vk. Card[Dom(rr)] is the number of objects that
exactly match rr. By the right support supR of action rule r, we mean supR(r) = Card[Dom(rs)] /Card[U].

The confidence of action rule r shows the success measure in transforming objects from a lower preference
decision class to a higher one. The support of action rule r in R, denoted by Sup(r), is the same as the left
support supl(r) of action rule r. This is the percentage of objects that need to be changed into a more
preferable class. By the confidence of the action rule r in R, denoted by Conf(r), we mean

Conf(r)=(Card[Dom(r.)]/Card[Dom(V.)])*(Card[Dom(rr)]/Card[Dom(Vr)]).

Referring back to the example, we assume that attribute A is stable, attribute B is flexible, and T is the target
attribute. The values of attribute T are “t1” and “t2” in U. The preferable change is from t1 to t2. The minimum
support for both supR and supl is 15%, and the minimum confidence for rules is 60%. Two action rules have
been constructed. These rules and their support and confidence are presented in Table 3.

Table 3. A set of action rules with their interestingness measures.

Action Rule supL(r) SUpR(r) confir)
(B, b3—> by) = (T, t1—> ) 50.0% 33.3% 75.0%
(A=a3) A (B, b3 b1) = (T, t1— t2) 33.3% 33.3% 100.0%
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4.2 Rule-based action rules mining

Let us assume that objects are described by / premises and L(r) = { Pr, Pp, ..., Pm }. We say that objects x
supports the action rule r in U, if there are objects y in U and two class association rules rl, r2 are extracted
from U such that:

. Pi(r1)=ka, Py(r2)=kz and ki< ka2

= (Vae [PsnL(r) NL(r2)]) [a(r) = a(r2)]

= (Vism){Vei e [Psn[L(r2) - L(ry)]]} [ei(r2) = ui]

= (Vi< n)}{Vbi € [Ps L(r1) N L(r2)]} [bi(r1) = vi] & [bi (r2) = wi]
= (Vi<o){Vfie [Pr [L(r2) - L(r)]]} [fi (r2) = ci]

= objects x supports rule rl

=  objects y supports rule r2

Let Ps L(r1) N L(r2) = A. By rule-based action rule on xe U we mean a statement:

{I1[a=a(r:): ae AlA (e1=u1) A (€2=U2) A ...A (€m = Um) A (b1, Vi—> W) A (b2, V2 —> W2) AcA (b, Vo —>
wn) A (f1, > c1)) A(f2, > c2) Ao Afr, = Co)HX) = [(Pt, k1 — k2)1(x).

where a = a(r1) denotes that the values of the common stable attributes for both class association
rules (r1 and r2) are the same, (e; = uj) denotes the value of the it" stable attribute in the rule r> not in
the rule r; is equal to ui, (bj, vi— wj) means that the value of the j*" flexible premise b has been
changed from vjto wj, and (f, — ¢/) indicates that the value of the /" flexible feature has to be
changed from an arbitrary value to ¢ for handling correlated flexible features. When attributes are
correlated, the change of one attribute value will influence the change of another value.

If we apply the left hand side of the rule on object x and this rule basically says: if we change the value of
attribute Ps; from v: to wi, change the value of attribute P, from vz to wy, ..., and change the value of attribute
Ps, from v to wi for objects x, then, the object which is in class ki is supposed to transition to class k2. Clearly,
to have this kind of action rules makes sense. A pair of class association rules extracted from the RDF store
should support an action rule. One class association rule basically links the property of vi, v, ..., va and the
property of kz. Then we have another class association rule that links the property of i, f, ..., b and the
property of k2. By definition, an action rule must have this kind of support to be valid.

By the support of action rule r, denoted by Sup(r), we mean the set of all objects in U supporting r. In other
words, this set of all objects in U supporting r has the property (a1 = u1) A (a2 = uz) A ..A (aq = Ug) A (b1 =Vvi1) A
(b2 =v2) Aven (bp = V) A (d = k1).

By the confidence of R in S, denoted by Conf{r), we mean

[Sup(r)/Sup(L(r))] x[Confi(r2)]

To find the confidence of (rs, r2) extended action rule R in S, we divide the number of objects supporting (rs, r2)
extended action rule in S by the number of objects supporting left hand side of (rz, r2) extended action rule
times the confidence of the second classification rules rzin S.

5. Conclusion and future work

As we are witnessing the increasing trend in both successful application of action rule mining and the
spreading of datasets using semantic linked data, we see that applying action rule mining to semantic web
data can have tremendous potential for knowledge extraction from different data source. In this paper, rule-
based action rules and object-based action rules with their interestingness measurements were defined for
semantic web data. We plan to extend our previous work SAG (Semantic Association Generator) (Tsay, et al.,
2015) on building actionable patterns from large-scale datasets.
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