

Shallow Deep Learning using Space-filling Curves for Malware
Classification

David Long and Stephen O’Shaughnessy
Technical University Dublin, Ireland
davielong86@gmail.com
Stephen.OShaughnessy@tudublin.ie

Abstract: The incidents of malware attacks are continually increasing at a rapid rate, thanks to the lucrative potential in
schemes such as ransomware, credential stealing Trojans and cryptominers. Their explosive growth is compounded by the
ease with which variants can be created from original strains. As a result, anti-virus organisations are struggling to keep up,
with some reporting upwards of 14 million samples processed per month. These sheer volumes have caused a shift towards
machine learning and artificial intelligence in an effort to alleviate the manual burden of analysis and classification. This
research presents a novel framework for the classification of malware into distinct family classes through computer vision
and deep learning. In the proposed framework, malware binaries are represented in an abstract form as images mapped
through mathematical constructs known as space-filling curves. Convolutional neural networks were constructed and applied
to the malware images to build predictive models for classification. The models were optimised using an auto-tuning function
for the hyper parameters, which included Bayesian Optimisation, Random search and HyperBand, providing an exhaustive
search on the hyper parameters. On a training dataset of 13k malware samples from 23 distinct families, the models yielded
an average score of 95% for precision, recall and f1-score. The final deep learning model was validated for robustness against
a dataset of more recent variants, comprising 12,816 samples from 16 malware families, returning classification scores of
95%, 86% and 90% for precision, recall and f1-score. The final model was demonstrated to outperform a similar benchmark
model considerably. The results show the potential of the deep learning framework as a viable solution to the classification
of malware, without the need for manually intensive feature generation or invasive processing techniques.

Keywords: Malware image classification, Deep Learning, Computer Vision, Space-filling curves, H-curve

1. Introduction
The continuing global upsurge in malware attacks can be greatly attributed to the potential profits to be gained
from schemes such as ransomware and credential stealing Trojans. Anti-virus companies, such as AV-Test, report
over 450,000 new malicious programs processed daily (AV-Test, 2021). Analysis on this scale is not manually
feasible and so analysts and researchers constantly strive to produce more scalable solutions. More and more,
researchers are utilising machine learning as a means of alleviating the manual analysis burden of malware
classification. Typically, features are collected and then are passed to classification algorithms to train models
for prediction, so feature generation, i.e., the extraction and subsequent choice of features, is crucial to the
success of the model. Broadly speaking, features can be extracted in two ways: statically (from non-running
binaries) or dynamically (from binaries in execution). Common static features are in the form of frequency or
sequence data, such as n-gram or PE file header analyses (Khalilian et al., 2018; Kolter and Maloof, 2004).
Dynamic features are extracted by executing malware and recording the behaviour by monitoring its interactions
with the operating system, for example through API call sequences and graph representations (Fukushima et al.,
2010). However, these approaches are not without their limitations. Frequency or sequence-based methods
are context dependent, so any word or frequency contexts outside of a given range are not recognised; dynamic
methods are prone to producing large volumes of false positives as much of the behaviours recorded are
common to benign applications also.

Computer vision and image processing techniques have been presented as an alternative to the more typical
approaches to malware classification (Wagner et al., 2015). Under these approaches, binary code is mapped or
transformed into image formats, such that the images retain characteristics that can be extracted as discriminant
features for identification and classification. The benefit of image representations is that the conversion process
is less invasive than other methods of analysis such as those discussed previously, which simplifies feature
generation. This paper presents a novel method of malware family classification that combines computer vision
and deep learning through convolutional neural networks (CNNs). Malware binaries are mapped to a 2-
dimensional image format through space-filling curves (SFCs). SFCs are mathematical constructs whose ranges
contain the entire 2-dimensional unit square i.e., the 2-dimensional unit square represents an image of n x n
pixels. SFCs traverse through every pixel point of a regular spatial region, such that the spatial locality of the data

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
145

mailto:davielong86@gmail.com
mailto:Stephen.OShaughnessy@tudublin.ie

David Long and Stephen O’Shaughnessy

is preserved. This is significant, as it enables the internal structure of the original malware binaries to be retained
and represented in the resulting images, which can then be used for classification purposes.

In summary, this research makes the following contributions:

• A novel approach to malware image classification through the application of Deep Learning & Computer
Vision to malware Space-filling curve images.

• Comparative analysis with benchmark previous work to determine viability of proposed method.
• A pre-processed labelled malware dataset consisting of approximately 26k samples in space-filling curve

image format.

2. Related work
The visualisation of binary files as images was introduced in the work of Conti et al. (2008), whereby a method
of reverse engineering binary files into visual images, dubbed "byteplots", was presented to enhance the
capabilities of text-based hex editors. In this work, Conti et al. derived a visual taxonomy of binary file fragments
using byteplots, to aid in the identification of common file formats. Conti et al. (2010) extended their previous
work by applying machine learning to classify file types by their visual features. On a dataset of 14k samples
comprising 14 file types, including machine code, encrypted data and plain text, the authors reported high
classification scores, particularly from unencoded files, where accuracies of 98.7% and above were recorded.
While the initial work presented by Conti et al. did not focus on malware classification, it demonstrated that the
internal static structure of binary files could be represented as 2-dimensional images, which fostered further
work in the application of byteplots to malware classification.

Previous works in image-based malware classification have focused predominantly on the byteplot
representation for image-based malware classification. Nataraj et al. (2011) were the first to apply the byteplot
mapping in this context. The authors derived feature vectors using GIST filters tuned to varying scales and
orientations. They evaluated their method using a dataset, dubbed Malimg, comprising 9,548 samples from 25
malware families, reporting an average classification accuracy of 92%. Vasan et al. (2020) presented a method
of transfer learning using the established pretrained VGG16 and ResNet-50 architectures with multiclass SVMs
as classifiers, applied to the Malimg dataset for malware family classification. The authors reported an average
accuracy score of 99.5% on their ensemble method, which out-performed 14 other similar methods. Le et al.
(2018) used 6 multi-layered convolutional neural networks on binary files from the Kaggle malware dataset
(Kaggle, 2015) that were converted to grayscale images. Results on the data showed 98.8% classification
accuracy.

In contrast, limited works exist on SFCs in the image-based malware classification domain. This paper extends
the work of O'Shaughnessy (2019), where the efficacy of space-filling curves was evaluated as a means of
representing malware variants for classification. Three SFC image datasets were produced by mapping 9,235 32-
bit executable malware samples from 28 distinct families to images using Z-order, Hilbert and Gray-code curve
traversals. Features extracted via Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG) and Gabor
filters were used to train Random Forest, K-Nearest Neighbour and Support Vector Machine classifiers. The best
results were obtained from the KNN-HOG model trained on the Z-order dataset, with precision, recall and
accuracy metric scores of 94.5%, 87.1% and 91.6% respectively. A comparative assessment with the method
presented by Nataraj et al. (2011), showed the KNN-HOG Z-order SFC model outperformed the GIST byteplot
method against previously unseen samples.

This research addresses several of the limitations associated with previous works. First, the framework utilises
SFC images to classify malware. SFCs have previously demonstrated better classification performance compared
to the predominant byteplot method (O’Shaughnessy, 2019). Second, the malware datasets used in this research
were compiled from recent repositories which are representative of current malware variants, compared with
the Malimg and Kaggle datasets, which were compiled in 2011 and 2015 respectively. Finally, this research
explores the use of deep learning applied to SFC images for malware classification, which has not been
documented previously.

3. Methodology
The research presented in this paper provides a study of deep learning and space-filling curves as a means of
classifying malware into their respective family classes. The method of the study comprises three distinct parts:

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
146

David Long and Stephen O’Shaughnessy

data gathering & pre-processing, data conversion and classification, illustrated in Figure 1. It should be noted
that this research is only concerned with the classification of malware into distinct family classes and as such no
benign samples were used for this research.

Figure 1: Deep learning malware classification framework architecture

3.1 Data Gathering and Pre-processing
This phase involved gathering and preparing the malware samples for conversion and classification. The samples
were collected from the VirusTotal (VT) academic collection (VirusTotal, 2021). The data used to train the deep
learning models consisted of 13,091 malware samples obtained during the period January 2018 - December
2019. A further dataset was compiled from January 2020 to July 2021 for validating the models. The validation
set was compiled from a more recent timeline to demonstrate the robustness of the models on newer
generation variants. It should be noted that due to the lack of samples from some families in more recent
repositories, the validation dataset comprised 12,816 samples from 16 out of the 23 families in the training set.
Since the samples were not labelled, it was a necessary pre-processing step to cluster the data into their
respective family classes. The labels for the samples were obtained through the AVClass labeller tool (Malicia,
2016). This tool parses the VT reports that accompany each sample and predict a class label according to the
majority anti-virus detections. This enabled the fast processing of the samples into their distinct family classes.

3.2 Malware Conversion
Space filling curves were chosen as the traversal mapping to convert malware binaries to image format. Space-
filling curves are a mathematical construct whose range contains the entire 2-dimensional unit square or more
generally an n-dimensional unit hypercube. In this case, the 2-dimensional unit square represents an image of n
x n pixels. SFC’s trace a continuous curve through every unit square, i.e., pixel in the image.

Figure 2: 1-dimension to 2-dimension mapping through Hilbert curve traversal. (a) first order, (b) second order
and (c) third order.

Figure 2 depicts the mapping of a 1-dimensional line (representing the sequential malware binary code) to a 2-
dimensional curve representation, in this case the Hilbert curve, in first, second and third order iterations. It is
evident that closely located points (a and b) map to similar positions on the SFC image. The significance of the
SFC traversal mapping in this context is the locality preservation of the data in the resulting images, i.e., similar
regions in the malware binary code are grouped together by clusters or regions of distinct colours or textures.
In this regard, it has been demonstrated previously by O’Shaughnessy (2019) that malware variants, who by
nature share considerable sections of code, map to similar textures within the SFC images. This then allows for
the images to be used as representations of the malware for classification purposes.

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
147

David Long and Stephen O’Shaughnessy

For the purposes of this research, scurve, a Python visualisation library, was used to convert the malware
binaries into SFC image format (Cortesi, 2012). The scurve library uses a colour-coding scheme, based on data
type, that maps the malware binary data to the resulting SFC images. The colour scheme classifies bytes into the
following categories: black for 0x00, blue for ASCII text, red for high-value bytes, and white for 0xff. These
mappings give the SFC images distinctive texture patterns. The images in Figure 3 show samples from three
malware families: Dridex, Emotet and Sfone. If the data type from the malware binary is distinct, it is displayed
as non-overlapping sections of a single colour. For example, Figure 3 (a) contains distinct regions of black,
denoting binary zeros whereas Figure 3 (b) contains regions of distinct blue, denoting ASCII characters. The rest
of the images comprise a mixture of multiple data types, which give the resulting image distinct texture regions.
The SFC traversal method chosen for this research was the H-curve implementation, which has been
demonstrated previously to possess the most favourable locality preservation properties over other curves.
Furthermore, the Hilbert, Z-order and Gray-code curves have previously been explored, whereas there currently
exists no work utilising the H-curve traversal.

Figure 3: SFC samples in H-curve format

3.3 Classification
The aim of classification in this context is to order the malware samples into their taxonomic groups or family
classes, based on shared textural similarities. Convolutional Neural Networks (CNN's) were employed in this
research as they had not been explored in similar works previously. This form of classification has been
demonstrated as a viable method for image recognition in many different areas. The main classification model
was implemented using python Tensorflow (Tensor flow, 2021) and Keras (Keras Team, 2021).

3.3.1 Hyperparameter Auto-tuning
The DL models were constructed through an extensive hyperparameter tuning process using the three Keras
auto-tune functions namely, Random Search (RS), Bayesian Optimisation (BO) and Hyperband (HB). RS operates
by selecting a random set of HPs and testing the models in an iterative approach, selecting a random set of HPs
for each iteration. BO treats the HP set as a regression problem which seeks to find the minimal loss in the
minimal amount of processing time. HB provides an extensive search by iteratively sampling combinations of
HPs over a defined number of epochs. It selects the optimum set based on the results, which is then used to
conduct the final training.

The models trained consisted of a basic model structure as did the base model used while identifying the best
HP set for the models. The range for the number of layers that the models were trained on was set between 2
and 10. This was done to keep complexity as low as possible to ensure the training could be carried out within
the confines of the available computational power. It was found that 10 layers made it infeasible to execute the
entire training process and so it was set as the upper bound for the number of layers in each model. Rectified
Linear Unit (ReLu) and Softmax activation functions were utilised in both the model training and the final model.
The ReLU function was applied at the convolutional and dense layers of the model, and Softmax was applied to
the final output layer to classify each malware sample input into its respective family class.

3.3.2 Model Architecture
In the pursuit of an architecture that is in line with the novel approach identified, the option of a predefined
architecture was discarded. The reason being that, while there are several pre-defined CNN architectures that
have proven effective in image classification, such as Res-Net50 or VGG16, their complexity and subsequent
burden on computational power made them infeasible for the proposed architecture. Instead, a simplified
custom architecture was devised, where high classification output performance was achievable, while remaining
within the feasible limits of computational power. Furthermore, since the SFC images were represented in a

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
148

David Long and Stephen O’Shaughnessy

pixelated form, there was less need for the intensive filtering used on the images as is typical in pre-defined
architectures. The models that were constructed for this research required just enough complexity to be
effective for classification, while remaining simplistic enough to execute within the limits of the analysis
machine, referred to as the "Goldie-locks-zone" (Fort and Scherlis, 2018).

Through the implementation of the models with the auto-tuning process, a network architecture was identified
for the final model. This structure was determined through an iterative process of adding a convolutional layer
with corresponding max-pooling and dropout layers until the optimum results were achieved. In the final model,
discussed in Section 4.2, the outputs of each convolutional layer are connected to a dense layer and a flattening
layer, then to the output layer with a softmax activation to classify each input into their respective classes of
malware. This approach classifies the one-dimensional representation of the malware binary files using two-
dimensional texture patterns of each SFC image as features. The proposed CNN architecture, illustrated in Figure
4, consists of 5 convolutional layers, 7 dropout layers, 3 dense layers and a flattening layer.

Figure 4: Final model architecture.

4. Analysis & Results
This section discusses the experimental methods devised to optimise the CNN architecture in terms of
classification performance and time complexity. Optimal hyper parameters were determined through the auto-
tuning functionality of the Keras-Tuner library. The metrics used to determine classification performance were
primarily accuracy, precision, recall and F1-score. Plots were used to provide a graphical view of the model’s loss
and accuracy over the range of epochs used.

4.1 Model Hyperparameter Tuning
A default configuration was devised where no tuning took place, in order to obtain a baseline accuracy to gauge
the performance of the auto-tuners. This baseline HP architecture was determined from previous research in
image-based classification, such as Le et al. (2018). The baseline and Keras auto-tuners were then applied to the
dataset. The loss and accuracy plotted over time (epochs) for each configuration is shown in Figure 5. The x-axis
represents the number of epochs, and the y-axis represents loss and accuracy for the training and validation
stages. From Figure 5, the baseline training and validation loss are convergent, meaning that the model did not
overfit the data. However, the training and validation accuracies are low, with none above 55%. The auto-tuners
performed considerably better, as expected. Both the BO and RS compared similarly for training and validation
phases, also producing convergent training and validation loss, with accuracy scores above 90% from epoch 10
and saturating at approximately epoch 20.

Baseline Model

Bayesian Optimization

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
149

David Long and Stephen O’Shaughnessy

Random Search

Hyperband

Figure 5: Tuning loss/accuracy performance

The classification performance of the baseline and auto-tuners was next investigated. Table 1 shows the
performance and time complexity for each method. The baseline model returned performance metrics of 61%,
48% and 46% for precision, recall and f1-score respectively. This is in line with the outputs from the loss and
accuracy plot discussed in Figure 5. The BO tuner performed less favourably than both the RS and HB tuners,
with precision recall and F1-scores of 92%, 89% and 89%, which constituted a loss of between 3% and 5%.
Furthermore, BO tuning was the slowest of the tuners, constituting almost one second per sample in the training
phase. Both RS and HB yielded the same results, with precision, recall and F1-scores of 95%. However, the RS
tuner HP set was chosen for the final model as training was almost twice as fast as HB.

Table 1: Model HP training classification performance and time complexity

Tuner Type Precision % Recall F1 Score % TPS (train) TPS (val)
Random Search 95 95 95 0.451 0.040
Bayesian Opt. 92 89 89 0.937 0.119
Hyperband 95 95 95 0.823 0.118
Baseline (no tuning) 61 48 46 0.697 0.040

TPS = Time per sample

4.2 Final Optimised Model
The final model was constructed from the optimised HP RS set, coupled with an architecture comprising 5
convolutional layers, 7 dropout layers, 3 dense layers and a flattening layer, obtained through an iterative
process, as discussed in section 3.2.2. The number of epochs chosen for the final model was 20, as accuracy
stabilised beyond this point. The recorded increased validation accuracy between epoch 18 and 30 was negligible
and so an early stopping parameter was set when training the model. When it reached a given value, the gains
from further training were deemed negligible and the model stopped training. Further research into the
optimum number of epochs would be irrelevant in this case as the dataset is not large enough to warrant a more
extensive training process.

4.2.1 Model Validation
If the final deep learning model is to be considered robust, it must be impervious against various perturbations
in malware variants as they evolve or mutate over time. Therefore, the final model was evaluated using a
validation dataset that was collected from a later timeline, as discussed in Section 3.1. The loss and accuracy
plot for the final model on the validation data is shown in Figure 6. The model achieved low training and
validation loss values, indicating that the classification error rate was low. Additionally, both loss curves are
convergent, which means the model did not overfit the data, so generalised well to the previously unseen data.
The model also returned a high classification accuracy for both training and validation, reaching ~95% after
epoch 5 and stabilised for the remainder of the experiment. These outputs show that the model was robust in
predicting newer generations of family variants.

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
150

David Long and Stephen O’Shaughnessy

Figure 6: Final model loss and accuracy performance

Table 2 shows the classification performance of the final model for each malware family class. While the model
performed well overall, there were some families that achieved low classification rates. For example, the model
performed poorly on the Emotet and Scar families. In both cases, precision and accuracy scores were low. Low
precision in this case means that when the model predicted a specific class of malware, in many cases it was
incorrect. Low recall means there is a high incidence where the model incorrectly predicted other malware
families as a particular class. However, the dataset compiled for this research is imbalanced, due to the lack of
availability of some family samples. From Table 2 the sample count, both Emotet and Scar contained low
numbers of samples (44 and 91 respectively), in which case there may have been insufficient features to train
the models on, leading to poor classification performance.

The class imbalance issues were compounded by the evolving nature of the malware. To provide illustrative
examples, Figure 7 shows Emotet samples taken from the training (a-c) and validation (d-f) datasets. It is evident
that the texture patterns are different across all example SFC images. Emotet has undergone many changes and
evolutions since its inception in 2014, where Emotet’s developers have changed its functionality and increased
obfuscation features in order to evade detection.

Table 2: Performance of the final model on the validation dataset

Malware family Precision % Recall % F1 Score % Sample Count % Of sample count
Allaple 81 97 88 264 1.92
Berbew 99 71 82 4146 35.35
Dinwod 98 96 97 911 7.1
Dorkbot 56 95 71 130 1
Emotet 7 55 13 44 0.34
Fsysna 88 72 79 188 1.47
Hematite 94 99 97 670 5.23
Oberal 33 97 49 101 0.79
Picsys 94 99 97 295 2.3
Salgorea 98 93 95 1235 9.64
Scar 16 19 17 91 0.71
Sfone 99 98 99 2719 21.21
Socks 79 100 88 30 0.23
Sytro 96 87 91 991 7.73
Vilsel 93 100 97 70 0.55
Vobfus 94 98 96 931 7.26
Weighted avg. 95 86 90

This results in the code structures differing greatly as the variants evolve. This produces disparate SFC images as
displayed in Figure 7 which in turn had a detrimental effect on the prediction capabilities of the models.

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
151

David Long and Stephen O’Shaughnessy

(a) (b) (c)

(d) (e) (f)

Figure 7: Emotet samples taken from the training (a-c) and validation (d-e) datasets

4.2.2 Time Complexity Optimisation
The initial conversion process produced SFC images of 256 x 256 pixels as this is the default setting in the scurve
library. However, the average time complexity per sample to train the model was 8.8 seconds, which can be
considered infeasible for large datasets. The optimisation of time complexity through smaller dimension images
was thus considered. The size parameter in the scurve library was tested at various dimensions and it was found
that training time was greatly reduced to 1.1s per sample, when the SFC images were converted to 32 x 32 pixels,
resulting in an accuracy loss of just 1.1%. This allowed the training and subsequent validation testing to be
conducted within a reasonable timeframe, which enhances the scalability of the proposed method. It should be
noted that the final tuned model achieved moderately faster time complexities of 0.925s and 0.041s per sample
for training and validation, respectively.

4.2.3 Comparison with previous benchmark method
To test the feasibility of the proposed deep learning method for image-based malware classification, a
comparative analysis was conducted with the previously proposed method by O'Shaughnessy (2019), discussed
in Section 2. This method can be considered a benchmark as it was the first documented work using space-filling
curves for malware classification. The best performing model, KNN-HOG, was chosen for comparative purposes.
The KNN-HOG model was trained and evaluated on the same H-curve SFC training and validations sets as the
proposed deep learning method. Table 3 shows the performance results for training and validation for both
methods. From the table, KNN-HOG outperformed the proposed method marginally in the training phase, with
precision, recall and accuracy scores of 97%. However, in the validation set, the deep learning model performed
considerably better in all three performance metrics. The results show that the proposed deep learning model
is more robust than the benchmark model, which demonstrates its feasibility as a viable method for image-
based malware classification.

Table 3: Performance comparison for KNN-HOG and DL models on training and validation data

 Training Validation
Model Precision % Recall % F1-score % Precision % Recall % F1-score %
KNN-HOG 97 97 97 83 63 63
DL 95 95 95 95 86 90

5. Discussion
The application of deep learning to classify SFC malware representations had not previously been explored,
which prompted the main motivation of the study. Furthermore, previous research focused on gathering
features for classification through invasive or complex malware analyses methods. The framework presented in
this paper provides a method for malware classification that negates the need for intensive feature generation
or invasive analysis techniques. By utilising convolutional neural networks, feature extraction and selection is
not necessary as the models identify different levels of image representations by learning the basic textures in

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
152

David Long and Stephen O’Shaughnessy

the first layers and evolving to learn features of the image in the deeper layers. The CNN architecture can be
considered shallow in that it consists of just 5 convolutional layers, which simplifies the model’s complexity for
more efficient computation, enhancing scalability for larger datasets. Additionally, the final model returned high
prediction rates on a validation set of variants from a more recent timeline, demonstrating its robustness against
evolved malware family variants. Finally, in order to evaluate the viability of the proposed method, a
comparative analysis was conducted with the final model and the benchmark method by O’Shaughnessy (2019).
The results show the final model significantly outperformed the benchmark model on the validation dataset,
proving its viability.

6. Conclusions and Further Work
The main aim of this research was to produce a malware classification solution that was robust and scalable to
overcome current limitations. The findings presented here are significant in that they demonstrate the feasibility
of proposed deep learning framework as a robust, scalable method for image-based malware classification.
Limitations exist, including the size of the dataset and the format of the malware. CNNs have been shown to
perform best on larger datasets. There is scope to increase the malware dataset to improve the model’s
performance. The malware format chosen to investigate was the Windows Portable Executable format, which
represents the format used in the majority of malware produced. Again, research could be expanded to include
other formats such as malicious PDF or Word Macros.

References
AV-Test, 2021. Malware Statistics & Trends Report | AV-TEST [WWW Document]. URL /en/statistics/malware/ (accessed

2.18.21).
Conti, G., Bratus, S., Shubina, A., Lichtenberg, A., Ragsdale, R., Perez-Alemany, R., Sangster, B., Supan, M., 2010a. A Visual

Study of Primitive Binary Fragment Types 17.
Conti, G., Bratus, S., Shubina, A., Sangster, B., Ragsdale, R., Supan, M., Lichtenberg, A., Perez-Alemany, R., 2010b.

Automated mapping of large binary objects using primitive fragment type classification. Digital Investigation 7, S3–S12.
https://doi.org/10.1016/j.diin.2010.05.002

Conti, G., Dean, E., Sinda, M., Sangster, B., 2008. Visual Reverse Engineering of Binary and Data Files, in: Goodall, J.R., Conti,
G., Ma, K.-L. (Eds.), Visualization for Computer Security, Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, pp. 1–17. https://doi.org/10.1007/978-3-540-85933-8_1

Cortesi, A., 2021. cortesi/scurve, https://github.com/cortesi/scurve.
Fort, S., Scherlis, A., 2018. The Goldilocks zone: Towards better understanding of neural network loss landscapes.

arXiv:1807.02581 [cs, stat].
Fukushima, Y., Sakai, A., Hori, Y., Sakurai, K., 2010. A behavior based malware detection scheme for avoiding false positive,

in: 2010 6th IEEE Workshop on Secure Network Protocols. Presented at the 2010 6th IEEE Workshop on Secure
Network Protocols, pp. 79–84. https://doi.org/10.1109/NPSEC.2010.5634444

Institute, M.L.@ I.S., 2021. AVClass and AVClass2.
Kaggel, 2015. Microsoft Malware Classification Challenge (BIG 2015) [WWW Document]. URL

https://kaggle.com/c/malware-classification (accessed 3.3.21).
Keras Team, 2021. Keras documentation: Developer guides [WWW Document]. URL https://keras.io/guides/ (accessed

6.21.21).
Khalilian, A., Nourazar, A., Vahidi-Asl, M., Haghighi, H., 2018. G3MD: Mining frequent opcode sub-graphs for metamorphic

malware detection of existing families. Expert Systems with Applications 112, 15–33.
https://doi.org/10.1016/j.eswa.2018.06.012

Kolter, J.Z., Maloof, M.A., 2004. Learning to detect malicious executables in the wild, in: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04. Association for Computing
Machinery, New York, NY, USA, pp. 470–478. https://doi.org/10.1145/1014052.1014105

Le, Q., 2018. Deep learning at the shallow end: Malware classification for non-domain experts. Digital Investigation 9.
Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S., 2011. Malware images: visualization and automatic classification, in:

Proceedings of the 8th International Symposium on Visualization for Cyber Security - VizSec ’11. Presented at the the
8th International Symposium, ACM Press, Pittsburgh, Pennsylvania, pp. 1–7. https://doi.org/10.1145/2016904.2016908

Nataraj, Lakshmanan, Yegneswaran, V., Porras, P., Zhang, J., 2011. A comparative assessment of malware classification
using binary texture analysis and dynamic analysis, in: Proceedings of the 4th ACM Workshop on Security and Artificial
Intelligence - AISec ’11. Presented at the the 4th ACM workshop, ACM Press, Chicago, Illinois, USA, p. 21.
https://doi.org/10.1145/2046684.2046689

O’Shaughnessy, S., 2019. Image-based Malware Classification: A Space Filling Curve Approach, in: 2019 IEEE Symposium on
Visualization for Cyber Security (VizSec). Presented at the 2019 IEEE Symposium on Visualization for Cyber Security
(VizSec), IEEE, Vancouver, BC, Canada, pp. 1–10. https://doi.org/10.1109/VizSec48167.2019.9161583

Tensor flow, 2021. Libraries & extensions | TensorFlow [WWW Document]. URL
https://www.tensorflow.org/resources/libraries-extensions (accessed 4.21.21).

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
153

https://doi.org/10.1016/j.diin.2010.05.002
https://doi.org/10.1007/978-3-540-85933-8_1
https://github.com/cortesi/scurve
https://doi.org/10.1109/NPSEC.2010.5634444
https://kaggle.com/c/malware-classification
https://keras.io/guides/
https://doi.org/10.1016/j.eswa.2018.06.012
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.1109/VizSec48167.2019.9161583
https://www.tensorflow.org/resources/libraries-extensions

David Long and Stephen O’Shaughnessy

Vasan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q., 2020. Image-Based malware classification using ensemble of CNN
architectures (IMCEC). Computers & Security 92, 101748. https://doi.org/10.1016/j.cose.2020.101748

VirusTotal, 2021. VirusTotal – Learning resources. URL https://www.virustotal.com/learn/ (accessed 8.28.21).
Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D.A., Aigner, W., 2015. A Survey of Visualization Systems for

Malware Analysis. Presented at the Eurographics Conference on Visualization (EuroVis), pp. 105–125.
https://doi.org/10.2312/eurovisstar.20151114

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
154

https://doi.org/10.1016/j.cose.2020.101748
https://www.virustotal.com/learn/
https://doi.org/10.2312/eurovisstar.20151114

	Long 066
	1. Introduction
	2. Related work
	3. Methodology
	3.1 Data Gathering and Pre-processing
	3.2 Malware Conversion
	3.3 Classification
	3.3.1 Hyperparameter Auto-tuning
	3.3.2 Model Architecture

	4. Analysis & Results
	4.1 Model Hyperparameter Tuning
	4.2 Final Optimised Model
	4.2.1 Model Validation
	4.2.2 Time Complexity Optimisation
	4.2.3 Comparison with previous benchmark method

	5. Discussion
	6. Conclusions and Further Work
	References

