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Abstract: Secured compounds often safeguard physical layout details of both internal and external facilities, but these details 
are at risk due to the growing inclusion of Light Detection and Ranging (LiDAR) sensors in consumer off-the-shelf (COTS) 
technology such as cell phones. The ability to record detailed distance data with cell phones facilitates the production of 
high-quality three-dimensional scans in a discrete manner which directly threatens the security of private compounds. 
Therefore, it behooves the organizations in charge of private compounds to detect LiDAR activity. Many security cameras 
already detect LiDAR sources as generic light sources in specific conditions, but further analysis must identify these light 
sources as LiDAR sources in order to alert an organization of a potential security incident. Testing confirms the feasibility of 
identifying some LiDAR sources based on the color and intensity of light shined directly into a camera sensor, but this analysis 
proves inadequate for cell phone LiDAR. However, the unique intensity and pattern characteristics of cell phone LiDAR 
reflected off a surface can potentially be identified by an object identification machine learning model. In order to train a 
model to identify a LiDAR object, we must first produce a training dataset containing marked and labelled LiDAR objects. To 
do this, we apply an image thresholding algorithm to isolate the LiDAR object in an image to calculate its bounding box. The 
image thresholding algorithm directly affects the bounding box accuracy, so we test two different algorithms and find that 
Otsu’s image thresholding algorithm performs best, resulting in 99.5% accurate bounding boxes. 
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1. Introduction 
The use of Light Detection and Ranging (LiDAR) devices spans across decades of history in various 
implementations for the military, private sector, and even civilian hobbyists (McManamon, Kamerman and 
Huffaker, 2010; Molebny, Kamerman and Steinvall, 2010). Although the basic principle of LiDAR relies on simply 
emitting infrared light at a surface or object and capturing what reflects back, the long-term development of 
LiDAR has produced countless LiDAR enabled technologies that facilitate a range of functions such as personnel 
detection through foliage (Tether, 2004), ecological measurement (Eitel et al., 2016), self-driving cars (Lin et al., 
2020), and digital recreation of 3-dimensional (3D) objects (Raj et al., 2020). However, the technological 
accomplishments enabled by LiDAR devices often come with a price tag beyond typical consumer budgets due 
to the specialized nature of LiDAR hardware components and supporting hardware/software (Queralta et al., 
2019). Fortunately for consumers, recent developments now provide inexpensive LiDAR hardware to consumers 
in a familiar portable package: cell phones. Unfortunately for organizations conscious of their security posture, 
this also now provides the layman with quick, inexpensive access to devices capable of nefarious activities like 
stealing intellectual property (Noble, 2020) and identifying burglary targets (Sturgeon, 2021). 
 
Many collections of buildings, land, and external or internal facilities (hereby referred to as “compounds”) often 
wish to maintain some degree of security. The actions taken to secure a compound vary, but the primary goal is 
to maintain some level of privacy whether that mean only allowing certain people access to the compound or 
simply shrouding internal facilities with external walls to prevent intelligence gathering. Despite best efforts to 
maintain privacy, no fool-proof method exists to prevent exploitation by potential threats due to the possibility 
of insider threats, espionage, etc. (Queralta et al., 2019). Therefore, compound defenders must opt to 
implement the best possible measures to detect threats as early as possible when preventing them is not an 
option. 
 
The newfound access to LiDAR-enabled cell phones increases the difficulty of a compound’s defenders’ ability 
to detect threats as early as possible. Cell phone LiDAR now enables a person to discreetly and openly carry 
around cell phone, as is common for people to do, and glean information about a compound from the LiDAR 
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sensor (Hetherington, 2021). Whether that be the width and length of the only access road to a compound or a 
detailed 3D external scan of a sensitive building, the security posture of a compound suffers from the intelligence 
that may be quickly obtained with a commercial off-the-shelf (COTS) device. Due to the fact that LiDAR emissions 
lie in the infrared spectrum invisible to the naked eye, defenders may worry of the requirement for costly, 
specialized hardware to detect foreign LiDAR emissions. Fortunately, inexpensive COTS devices also exist that 
aid in the detection of LiDAR. 
 
Despite lying above the spectrum of light visible to the naked eye, some COTS security cameras capture LiDAR 
light emissions (Akopyan, 2016). Fortunately for defenders, this capability exists in many new security cameras 
as well as various security cameras manufactured in the past couple of decades, enabling defenders in some 
cases to leverage cameras already installed on their compounds. These cameras fail to capture the majority of 
unique LiDAR characteristics, such as light frequency, that differentiate it from visible light, but they do capture 
the high intensity and unique pattern of light produced by 3D cell phone LiDAR. In the absence of other unique 
characteristics, we focus on the intensity and pattern alone to identify cell phone LiDAR activity in security 
camera footage. 
 
Object detection methods identify if certain objects exist within a picture according to a model trained on images 
with said objects accurately marked and labelled (Aker and Kalkan, 2017). In order to produce a model that 
accurately identifies 3D cell phone LiDAR in an image, we must first train the model on images that contain 
accurately marked and labelled 3D cell phone LiDAR emissions. No public collection of such data or any 
framework for producing such data exists to our knowledge, so this research develops a framework to collect 
security camera footage of 3D cell phone LiDAR emissions and produce individual frames with each LiDAR object 
marked and labelled for use in training an object detection machine learning model. Image thresholding 
algorithms allow us to isolate the LiDAR object automatically, so we investigate which algorithm produces the 
most accurate bounding boxes. 

2. Background and related research 
The rear LiDAR module on cell phones commonly emits a 2-dimensional (2D) array of beams (Figure 1) for use 
in applications such as 3-dimensional (3D) scanning and distance measuring (Raj et al., 2020; Gallagher, 2021). 
This characteristic exists in multiple LiDAR-enabled cell phones, but this research uses only the rear LiDAR sensor 
on the iPhone 12 Pro Max (hereby referred to generically as “cell phone”). However, the research can be applied 
to other cell phones if their rear LiDAR sensor emits a 2D array similar to the iPhone 12 Pro Max. 
 

 
Figure 1: 2D array of LiDAR light points emitted by iPhone 12 Pro Max (Y, 2021) 

Most cameras that use a complementary metal–oxide–semiconductor (CMOS) sensor can record a portion of 
light above the visible spectrum in the near-infrared (NIR) spectrum between 800 nanometers (nm) and 1000 
nm (Vollmer, Möllmann and Shaw, 2015; Akopyan, 2016). However, physical NIR filters normally block the CMOS 
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sensor to prevent NIR light from distorting the image (Vollmer, Möllmann and Shaw, 2015). Cameras utilizing a 
CMOS sensor, such as the Lorex LNB8921BW-C used in this research, contain a Night Mode which physically 
moves the NIR filter out of the way of the sensor which enables the capture of NIR light (Lorex, 2021). Many 
LiDAR sources emit light in the NIR spectrum, enabling cameras with unfiltered CMOS sensors to capture the 
light (Li et al., 2021).  
 
LiDAR technologies obtain information by reflecting light off a surface and capturing the light that returns, 
meaning the light only contains meaningful data directly after emission from the LiDAR source and after its first 
reflection off a surface  (Raj et al., 2020). Therefore, cameras must capture LiDAR emissions either directly after 
they leave the LiDAR source (“direct”) or after they reflect off a single surface (“indirect”) to identify light 
characteristics indicative of LiDAR. Four key characteristics of LiDAR emissions help differentiate them from 
visible light: pulse frequency, color, intensity, and pattern (Marcoe, 2007; Raj et al., 2020). The pulse frequency, 
color, and intensity differentiate LiDAR light from visible light in direct captures whereas the intensity and 
pattern differentiate between the two in indirect captures. The described capabilities of CMOS cameras and 
LiDAR sources indicate that both methods should be possible, but testing indicates that we can only reasonably 
differentiate between cell phone LiDAR emissions and visible light in indirect light captures. 
 
With the NIR filter blocking NIR light from the CMOS sensor, our Lorex camera captures LiDAR from the Garmin 
LiDAR Lite 3HP as an intense white dot with purple edges that is roughly the width of a human thumb (1 inch) at 
a distance of 4 feet (see Figure 2). To differentiate the Garmin LiDAR from a light source in the visible spectrum, 
we can analyze the intensity and color components of the dot. Furthermore, we can develop a Fourier Transform 
model of the LiDAR emissions based on the known frequency and pulse width of the Garmin LiDAR source to 
compare to the Fourier Transform of the dot in the image. However, we do not know the exact frequency or 
pulse width of the cell phone LiDAR, and testing shows that cell phone LiDAR produces a much smaller dot at a 
maximum visible distance of 8 inches (see Figure 3). Therefore, analyzing the pulse frequency, intensity, and 
color of the cell phone LiDAR emitted directly into the camera sensor is not feasible. 
 

 
Figure 2: Garmin LiDAR captured by Lorex camera with Night Mode disabled at 4 feet 
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Figure 3: Cell phone LiDAR captured by Lorex camera with Night Mode disabled at 8 inches 

Indirect capture provides two benefits: wider angle of collection and pattern recognition. Only a fraction of the 
LiDAR light reflected off a surface returns to the LiDAR sensor while the rest scatters into the environment (Raj 
et al., 2020). This allows a secondary sensor (the camera) to capture the reflected light from a more diverse 
range of angles than is required in direct capture. This also allows the camera to capture all the light points in 
the 2D matrix emitted by the cell phone in order to identify the unique pattern (see Figure 4). Although the 
camera captures many of the LiDAR light points while in the presence of other light sources, isolating the light 
points in an image proves difficult due to the low intensity of the reflected LiDAR. Capturing the indirect LiDAR 
in a dark room increases the contrast of the light points, making it much easier to isolate them from the 
background surface. Once isolated, a machine learning model can learn the attributes of the cell phone LiDAR 
to identify the LiDAR in other images. 
 

 
Figure 4: Indirect cell phone LiDAR emitted against a wall at 4 feet 
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Much research exists on both training and employing machine learning models for purposes such human body 
posture analysis (Xie and Guo, 2019), common household objects identification  (Noman, Stankovic and Tawfik, 
2019), license plate detection on moving cars (Peker, 2019), and custom generated traffic sign detection (Kilic 
and Aydin, 2020). These projects all utilize the TensorFlow machine learning framework which we use in this 
research (TensorFlow, 2018). Other popular machine learning frameworks such as Caffe, Torch, and Theano 
exist, but they lack the relative GPU support, ease of use, and customization of TensorFlow (Phadnis, Mishra and 
Bendale, 2018). TensorFlow provides highly accessible functions thanks to its implementation in Python, a 
powerful high-level programming language which we use exclusively for this research (Python, 2021). The high 
customization of TensorFlow allows us to produce a model from a wide range of machine learning algorithms. 
The exact TensorFlow algorithm used falls outside of the scope of this research, but studies show that 
TensorFlow provides many efficient algorithms for object detection which makes it a good candidate towards 
which we develop training data (Phadnis, Mishra and Bendale, 2018; Kilic and Aydin, 2020). 
 
To identify custom objects in an image, we must first train a TensorFlow machine learning model on a dataset 
containing said objects. Production of a training dataset employs the following generic steps: data collection and 
cleaning, object marking and labelling, and dataset structure generation (Kilic and Aydin, 2020). We follow this 
methodology but break it down into further specific steps in Section 3 to generate the training dataset. 
 
Data collection and cleaning consists of collecting the images that contain the objects the machine learning 
model will learn to detect. “Cleaning” regards ensuring all images possess the same characteristics such as 
resolution, height and width, color mode, etc (Kilic and Aydin, 2020). 
 
Object marking and labelling, typically the most labor-intensive part, draws a bounding box around each relevant 
object in an image and labels it with its object name, or class (Kilic and Aydin, 2020). A bounding box, more aptly 
called a minimum bounding box, describes the smallest rectangle that surrounds the entire desired object. Each 
bounding box contains a label of the object. A training dataset must contain accurately marked and labelled 
data, called “truth data”, to ensure the machine learning model learns the relevant information about the object 
it should detect (Kilic and Aydin, 2020). Due to the large workload required to manually mark and label many 
images, much research exists on methods to automatically mark and label data (Feng, Jun and Cheng, 2010; Kim, 
Hong and Han, 2018; Pelkmann, Tharwat and Schenck, 2020; Roh, Heo and Whang, 2021). In the absence of 
automatic methods, tools such as LabelImg allow us to mark and label each image by hand (tzutalin, 2021). 
 
Calculating the bounding boxes relies on the concept of image thresholding to detect the edges of the light 
points. Image thresholding algorithms segment images based on detected object edges using various analysis 
techniques. Two popular algorithms perform such analysis efficiently: Otsu’s algorithm and Yen’s algorithm. 
Otsu’s image thresholding algorithm minimizes the intra-class variance of pixel color values in a grayscale image 
to dynamically calculate a threshold value (Otsu, 1979). Yen’s algorithm defines a cost function which it 
minimizes to calculate a threshold value (Yen, Chang and Chang, 1995). When applying the threshold value as a 
binary filter on a grayscale image, all pixels with a color value below the threshold turn black (grayscale value 0), 
while all those equal to or above the threshold turn white (grayscale value 255). Only the high intensity pixels 
remain, allowing for the trivial calculation of the bounding box from the minimum and maximum X and Y 
coordinates of all non-black pixels. 
 
The accuracy of a calculated bounding box regards its proximity to the true bounding of the object. Many 
machine learning applications gauge accuracy with a metric called Intersection over Union (IoU) which compares 
the intersecting area of two bounding boxes to the total area covered by both boxes. A perfect calculated 
bounding box has an IoU of 1 (completely intersecting) while a completely inaccurate calculated bounding box 
has an IoU of 0 (not intersecting at all) (Rezatofighi et al., 2019). 

3. Project design 
We developed a framework to collect and parse video footage that consists of three distinct parts: the cell 
phone, the security camera, and the parsing software. 
 
As shown in Figure 5, we place the cell phone and security camera in a dark room approximately 5 feet deep and 
4 feet wide. Both the cell phone and camera stand at the same height 4.5 feet off the ground pointed directly 
horizontal at the back wall. The camera points from the left wall approximately 3 feet from the back wall, while 
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the phone points from the front wall approximately 5 feet from the back wall. The field of view of both devices 
intersect, enabling the camera to record the indirect LiDAR emissions from the cell phone. 
 

 
Figure 5: Cell phone and camera set up in dark room 

3.1 iPhone 12 pro max 
We use the iPhone 12 Pro Max to emit LiDAR light from the rear LiDAR sensor at a wall which reflects off for 
collection by the security camera. Apple provides a sample project that enables distance data collection with the 
rear LiDAR module (Apple, 2020). We slightly modify this project for ease of use, but the project as provided by 
Apple sufficiently emits the 2D LiDAR matrix (Figure 1) for collection by the security camera. We use the software 
XCode 12 on a 2020 M1 MacBook Pro to deploy the project as an app for the cell phone (Apple, 2021). Once 
deployed to the phone, we simply open the app and point it at the wall to constantly emit LiDAR light. 

3.2 CMOS security camera 
We use the Lorex LNB8921-C IP security camera to record video footage of the indirect LiDAR emissions. 
Preliminary testing shows successful collection of indirect LiDAR emission from the cell phone when we enable 
Night Mode on the camera. Various shutter speeds accurately record the LiDAR emissions, but testing shows 
that a shutter speed of 1/30 performs best at collecting video footage to process for training a future machine 
learning model. We record the video footage with a resolution of 704x480 at a frame rate of 15 frames per 
second (FPS). All of the aforementioned settings must be set manually in the camera’s local web interface before 
recording footage with the Python script detailed in the following section. 

3.3 Parsing software 
We implemented the parsing software as a Python 3 script that primarily utilizes two libraries, TensorFlow 2.0 
and OpenCV, which henceforth is referred to generically as Python, TensorFlow, and OpenCV respectively. 
OpenCV provides a wide range of real-time computer vision functions that we leverage for the majority of the 
image processing (OpenCV, 2021).  
 
The bulk of this research focused on developing Python code to parse the video footage from the Lorex security 
camera and label the indirect LiDAR object data in each frame according to the standards of the machine learning 
training requirements for TensorFlow. This results in a dataset containing: 

1. Each frame saved as an image 
2. Comma Separated Values (CSV) file containing a bounding box and object label for the indirect LiDAR 

object in each frame 
3. Class file containing LiDAR object label 
4. Record files for training and evaluating machine learning model 

Proceedings of the International Conference on Information Warfare and Security, 2022 
454



Tristan Creek and Barry E. Mullins 

This dataset contains everything needed for training an object identification machine learning model with 
TensorFlow. The following section details the exact methodology of how we implement the parsing software to 
generate the dataset.    

4. Research methodology 
To produce the dataset for training a machine learning model, our Python script collects and parses video 
footage in the following steps: 

1. Record video footage from the security camera 
2. Process the footage to generate bounding boxes and object label for indirect LiDAR emissions in each 

video frame 
3. Produce data files required to train machine learning model 

 
We perform step 2 twice on the same footage from step 1: once using Otsu’s algorithm and once using Yen’s 
algorithm. We use LabelImg to manually mark and label the bounding boxes for each frame in the video from 
step 1 which we use as truth data to analyse the performance of each image thresholding image. 

4.1 Record video footage 
The Lorex security camera readily exports footage via the Real Time Streaming Protocol (RTSP), a standardized 
protocol for controlling delivery of data with real-time properties such as live video (Schulzrinne, Rao and 
Lanphier, 1998). This allows OpenCV to interface directly with the camera and record video footage to a 
computer for processing. With the camera settings configured according to the Background section, the FPS of 
15 must also be provided to OpenCV when writing the video file to disk to ensure it matches the frame rate at 
which the camera recorded it. 

4.2 Process the video footage 
With the video containing indirect LiDAR emissions recorded to disk, we then process the video footage into the 
training dataset as follows: 

1. Separate the video footage into frames 
2. Calculate the threshold value for an image mask to isolate the LiDAR emission points 
3. Calculate the bounding box for the light visible in the masked image 
4. Write data for training use 

4.2.1 Separate the video footage into frames 
When reading the video file from disk, we must provide the video height, width, FPS, and encoding format to 
OpenCV according to the Lorex security camera settings. The Python code splits one video of indefinite length 
into individual frames, represented as OpenCV images, for which the next step calculates image mask thresholds. 

4.2.2 Calculate threshold for image mask 
For later use in calculating the bounding box of the LiDAR object in each frame, we use Otsu’s and Yen’s image 
thresholding algorithms in separate executions to isolate the LiDAR object from the original image (Figure 6(a)). 
This produces the image mask seen in 6(b) which we use to calculate the bounding box. 

4.2.3 Calculate bounding box 
The ideal bounding box encapsulates every white pixel in the image mask without encapsulating any black pixel 
not required to encapsulate a white pixel. Although this can be manually calculated from the minimum and 
maximum X and Y coordinates of all white pixels, OpenCV provides much more efficient functions that find the 
minimum bounding box for the contours (object edges) found in an image. Since we effectively provide the 
contours in the image mask, OpenCV quickly identifies them and calculates the bounding box for the LiDAR 
object in the image as seen in 6(c). 
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Figure 6: Image thresholding is applied to the original image (a) to derive the image mask (b) and calculate the 
bounding box (c) 

4.2.4 Write data 
With the bounding box calculated and object label known, we write the data files described in Section 3.3 for 
later use in training a machine learning model. We use OpenCV to save the individual frames obtained in Section 
4.2.1 as PNG files. The CSV file, class file, and record files must meet specific format requirements, so we use a 
publicly available Python script to generate them (Meneghetti, 2020). This script formats our single “LiDAR” 
object label into the proper class file, as well as aggregates each image’s file name, width, height, object label, 
and bounding box parameters into a CSV file which it then combines with the class file to generate the record 
file. 

5. Results and analysis 
We calculate the Intersection over Union (IoU) for the bounding boxes resulting from both Otsu’s and Yen’s 
image thresholding algorithms as compared to our manually calculated ground truth bounding boxes. The 
comparison yields 150 IoU measurements, one for each image. The Wilcoxon signed rank test comparing the 
150 IoU values from both Otsu’s and Yen’s algorithm reports a P-value 1.05289e-43 indicating that Otsu’s 
algorithm undoubtedly performs better than Yen’s algorithm. Considering the small relative IoU standard 
deviations for both algorithms, a similar result can be seen intuitively in Table 7. The IoU mean of Otsu’s 
algorithm lies more than 10 standard deviations above the IoU mean of Yen’s algorithm, clearly indicating better 
accuracy. Both algorithms appear to produce highly accurate bounding boxes based on visual analysis, but this 
statistical analysis proves Otsu’s algorithm is the best choice for future use in producing data for training a 
machine learning model. 

Table 7: Intersection over Union results for both image thresholding algorithms 

Algorithm IoU Mean IoU Standard Deviation 
Otsu’s 0.995169 0.0162411 
Yen’s 0.926803 0.0556291 

6. Conclusion 
The resulting framework allows us to easily record security camera footage that contains indirect cell phone 
LiDAR emissions and automatically mark and label the LiDAR object in each frame, saving a large amount of time 
that would otherwise be spent manually producing the same results. The choice of image thresholding algorithm 
directly influences the accuracy of the bounding boxes which behooves us to choose the best algorithm possible 
to produce accurate training data for a machine learning model. Testing shows that Otsu’s image thresholding 
algorithm produces training data with 99.5% accurate bounding boxes, making it a better choice than Yen’s 
algorithm. Therefore, we plan to utilize Otsu’s image thresholding algorithm in the future to produce a large 
number of labelled images with which we can train a machine learning model that accurately detects LiDAR 
objects in a wide range of images. 
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