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Abstract: Ransomware is a developing menace that encrypts users’ files and holds the decryption key hostage until the victim 
pays a ransom. This particular class of malware has been in charge of extortion hundreds of millions of dollars every year. 
Adding to the problem, generating new variations is cheap. Therefore, new malware can detect antivirus and intrusion 
detection systems and evade them or manifest in ways to make themselves undetectable. We must first understand the 
characteristics and behavior of various varieties of ransomware to create and construct effective security mechanisms to 
combat them. This research presents a novel dynamic and behavioral analysis of a newly discovered ransomware called 
Thanos. It was founded in 2020 and is building up to be the leading malware used by low-to-medium-level attackers. It is 
part of a new ransomware class known as RaaS (Ransomware as a Service), where attackers can customize it for their desired 
target audience. So far, it is more prevalent in the middle east and North Africa and has over 130 unique samples already. As 
part of this investigation, the Thanos ransomware is carefully being analyzed. A testbed is created in the virtual artificial 
environment that mimics a regular operating system and identifies malware interactions with user data. Using this testbed, 
we can study how ransomware generally affects our system, how it spreads, and how it continually persists to access the 
user’s information. We can design a new security mechanism to detect and mitigate Thanos and similar ransomware based 
on behavior examination results. 
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1. Introduction 
Since the advent of cryptos like Bitcoin, cybercrime has been on the rise that led to the development of a new 
type of malware called ransomware. Ransomware is a malicious software that enables attackers to access users' 
data and restrict them until a ransom is paid. Ransomware has grown to become the most financially rewarding 
form of malware for cyber attackers over the years. There are two major types of ransomware: 1) encrypting 
these data until a ransom is paid to decrypt (crypt) using a strong cryptography algorithm, 2) locking users out 
without tampering with their data until the ransom is paid (locker). Since the introduction of ransomware, the 
threat landscape has witnessed an increase of an annual rate of 267 percent. This research presents a novel 
dynamic and behavioral analysis of a newly discovered ransomware called Thanos. 
 
It's essential to look at previous approaches that have been aimed at analysing and detecting ransomware. 
Previous research has attempted to identify and eliminate malware infections using the signature-based 
strategy. However, so far though, this has shown to be ineffective in properly identifying all types of malware. 
While signature-based solutions are rapid and efficient, they are also easily circumvented by very new or much 
older kinds of malware as discussed by Mahdavifar and Ghorbani (2019) and Zhang et al (2020). The behavior-
based malware detection approach, on the other hand, has stronger resistance to this older virus but falls short 
since it is exceedingly time-consuming. We may conclude from these two distinct types of malware detection 
systems that, while both are effective solutions, they are not comprehensive enough to recognize malware. 
 
As a solution, we propose a more hybrid system, utilizing both the signature and dynamic behavior-based 
detection techniques, with the added layer of the machine learning algorithm. This hybrid system would give a 
more robust answer to the malware detection challenge. 
 
The primary purpose of this research is to present multiple potential approaches for training malware classifiers 
using machine learning. Another objective is to prevent ransomware from spreading laterally inside a network. 
To prevent the lateral movement of ransomware, we will use various techniques such as SDN, Moving Target 
Defense, and Zero Trust. 

2. Related Work 
This section includes a brief review of previous ransomware detection methods classified based on machine 
learning, file system/process monitoring, and network traffic. 
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2.1 Classifications Based on Machine Learning 

2.1.1 DNAAct-Ran 
According to Khan et al (2020), the traditional signature-based malware detection is no longer efficient in 
identifying ransomware. As a result, their answer presented a new and better way using the ground-breaking 
Digital DNA sequencing engine. This engine employs a machine-learning algorithm to classify ransomware based 
on its digital genome and phenotype to identify its numerous destructive functionalities appropriately. The 
suggested DNAAct Ran technique uses machine learning to determine if a software is a ransomware. This 
technique achieves this aim by first selecting the significant traits, generating digital sequences for those 
selected futures, and detecting the ransomware. The algorithms utilized are the Multi-Objective Grey Wolf 
Optimization (MOGWO, an extension of GWO by Mirjalili, Mirjalili and Lewis (2014)) and the Binary Cuckoo 
Search (BCS algorithm) by Yang and Suash (2009). The classifier's performance in comparison to other ML 
approaches is used to assess the accuracy of the DNAAct-capacity Ran's to identify ransomware.  Some other 
active machine learning approaches, in addition to this, suggested one, include naive Bayes, decision stump, and 
the Adaboost classification algorithm. 

2.1.2 Know Abnormal, Find Evil: Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence 
Homayoun et al (2020) advocated employing sequential pattern mining algorithms to discover the best 
attributes of ransomware programs from benign apps and to identify ransomware software. The efficiency of 
their detection characteristics was examined by using them with the J48, random forest, bagging, and MLP 
classification algorithms. The criteria for this investigation were the usual types of True Positive (for total samples 
now recognized), False Positives (mistakenly identified samples), True Negative (number of correctly rejected 
samples), False Negative (number of incorrectly rejected samples) (Incorrectly rejected samples). 
 
They begin by identifying and defining detectable patterns and occurrences to identify the appropriate attributes 
for classification. The sequence pattern mining approach will next be applied to each dataset in order to identify 
the best sequence pattern. Each sequence in each dataset is then cross-matched based on the maximum 
sequence pattern to highlight the characteristics of the training classifiers. The following are examples and 
descriptions of maximum sequence patterns: 1) R (for all events must be registry), 2) D (all events must be DLL), 
3) F (all events must be file), 4) RF (multiple transitions, but the first transition is from the registry to the file 
event), 5) RD (multiple transitions, but the first transition is from the registry to the DLL event), 6) FR (multiple 
transitions, but the first transition is from file to registry event), 7) FD (more than one transition, although the 
initial transition is (more than one transition, but the first transition is from DLL to file event). 

2.2 Classifications Based on File System/Process Monitoring 
Prior attempts to detect malware have primarily focused on monitoring its low-level file system operations. 
UNVEIL by Kharraz et al (2016) is one such technique. UNVEIL detects ransomware by attempting to monitor file 
activity. They were divided into three types based on file system operations (whether a file was read, 
written/encrypted, deleted, or overwritten) to monitor these actions. They may be able to detect ransomware 
assaults as a result of this. The Redemption by Kharraz et al (2017) method was also used to examine the request 
pattern of a file I/O to see whether there was any potential ransomware for each process. If this is restored, the 
processes that have been labelled as dangerous will be terminated. These are good solutions in general, but 
their drawback is that many harmless apps, such as encryption and compression of applications, also have such 
file access characteristic features. If this is the case, these solutions risk producing a large number of false-
positive findings since they consider those features to be the same when identifying the activity of various 
ransomware file systems. Below are a few more characterizations based on file system/process monitoring. 

2.2.1 RWGUARD: A Real-Time Detection System Against Cryptographic Ransomware 
Mehnaz et al (2018) presented RWGUARD a decoy-based ransomware technique rigorously tested to analyze 
14 of the most common ransomware and detect their operations in real-time. It used both the file change and 
the process change to identify files encrypted by ransomware. Three monitoring strategies were used in this 
approach: file change monitoring, decoy monitoring, and process monitoring. By employing the correct 
CryptoAPI function and learning characteristics identical to the user's encrypted file, it was possible to distinguish 
between a benign and an encrypted ransomware file. Using this comprehensive decoy system, it was nearly hard 
for ransomware to distinguish their fake files. 
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2.2.2 RANSOMSPECTOR 
This method is based on the virtual machine introspection approach which was presented by Garfinkel and 
Rosenblum (2003). This solution integrates file operations like opening, renaming, closing, reading, and writing 
with network operations like connecting, binding, receiving, sending, and disconnecting. They then matched 
them to discover which corresponded to specific system calls in the kernel of the operating system. The virtual 
machine can also collect this, which includes context information like the system call's return value, the 
parameters, and, lastly, the caller's process. Tang et al (2020) also discovered that a significant number of crypto-
ransomware samples linked to a network create a huge number of network patterns with similar patterns that 
differ from their file activities. As a result, by analyzing how these ransomware programs interface with the 
network and file system, they will gain a bit more precision and inform the user if there is evidence of a 
ransomware assault. 

2.2.3 Crypto Ransomware Analysis and Detection Using Process Monitor 
Kardile et al (2017) suggested a method for identifying ransomware attacks based on a process monitor 
implemented on top of Cuckoo Sandbox. They intentionally picked sandbox because it removes the danger of 
data loss because Cuckoo sandbox returns to its original state after the malicious sample has been executed. 
This method first builds a genuine and bogus environment to run these ransomware strains. They may then 
capture the file system calls trail and record the I/O access using a process monitor. Their research discovered 
that when suspected malware attacked the system being targeted, the behaviors and activities of files in the 
system altered dramatically. They found that the time stamp for the entries in the Master File table was quite 
close to a ransomware assault occurring on that system by observing the Master File Table. 

2.2.4 Cryptodrop 
Scaife et al (2016) presented a solution designed for the Windows operating system, which has been known to 
be frequently targeted by ransomware. This method of identifying ransomware relies on indicators to track the 
many ways in which a file is changes. If all of these indicators are discovered to be true in a file, it may be 
determined that the file has been corrupted and contains harmful elements. These signs include categorizing 
ransomware activity based on their actions into three categories. For class one, the ransomware would try to 
rewrite what was in the original file by opening it, reading it, encrypting it, and closing it. For class two, alter the 
location of the user's file, read and encrypt the file, and then return it to its original position. The file name may 
change from the original name by shifting the file back and forth. The ransomware would examine the file, 
produce an encrypted copy, and then destroy or replace the original for the final class. 

2.2.5 SSD-assisted Ransomware Detection and Data Recovery Techniques 
On the storage side, SSD insider++ method presented by Baek et al (2020) incorporates sophisticated features 
like online ransomware detection, flawless data recovery, and sluggish detection. The technique described for 
online detection is one of the key distinctions between this suggested approach and signature-based 
alternatives. The algorithm watches and analyzes the host machine's I/O pattern and makes a judgment during 
run time by analyzing invariant traits that characterize the I/O behavior of ransomware-affected host computers. 
This is especially significant since it now allows for identifying ransomware attacks in their early phases. The SSD-
insider++ overcomes the drawbacks of earlier software and hardware in detecting ransomware by combining a 
ransomware detection and a data recovery algorithm onto a single SSD. 
 
The SSD-architectural insider++'s architecture comprises ransomware detection and backup/recovery. To 
identify any abnormal behavior, the SSD Insider++ employs two distinct file operations known as "update-after-
read" and "trim-after-read." When ransomware attacks files, its goal is to remain undetected for the longest 
time feasible by the user. As a result, if many I/O patterns are discovered, we can interpret this as a symptom of 
a ransomware assault. Baek et al. studied the behavior of six prominent real-world malware to capture 
ransomware behaviors. Zerber, Locky, Cryptoshield, WannaCry,  Mole, and Jaff are examples of malware among 
them. To identify the traits capable of differentiating this malware by comparing their I/O footprints to those of 
common apps.  After training and testing with various combinations of this ransomware and programs, the SSD 
insider++ was able to identify new or undiscovered malware by recognizing their distinctive I/O patterns. 
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2.3 Classifications Based on the Network Traffic 

2.3.1 The Case of BadRabbit 
Alotaibi et al (2021) developed a technique for detecting efforts to distribute ransomware at the network level 
rather than preventing the device from being encrypted, which was already addressed in prior studies using 
badRabbit as a case study. To accomplish this analysis, they employ two VMs, one Windows 10 and one REMnux, 
for static analysis. They operated four virtual machines for the dynamic analysis: one with a REMnux acting as a 
gateway, two with Windows 10 (one infected with BadRabbit), and one with Windows 7. The investigation 
showed that Bad Rabbit did not need to contact the command-and-control server to exchange an encryption 
key; instead, it accessed these files using a public key. Because Bad Rabbit is self-propagating ransomware, our 
solution employs five modules to identify and fight self-propagating malware. Deep packet inspection (dpi) and 
packet header inspection are examples of these modules (phi), honey pot-based, ARP scanning-based detection, 
and SMB Packet size checkers. 

2.3.2 Ransomware Early Detection by the Analysis of File Sharing Traffic 
Morato et al (2018) presented Ransomware Early Detection from FIle SHaring traffic which is usually referred to 
as REDFISH. This solution may be regarded as a framework for detecting and blocking different ransomware 
behaviors when the infection encrypts data on a network volume from a Network Attached Storage. 
 
This solution examines the difference in traffic behavior between infected and non-infected hosts. The 
characteristics they investigated for these host behaviors include how files on a shared file are opened, read, 
written, and deleted. Their approach is derived from studying SMB/SMB2 traffic over a single TCP connection. 

3. Proposed Approach 
For this work, our major goal is to implement a novel approach to detect the Thano Malware. The analysis would 
be carried out in three major layers. The first two layers would be the behavioral and signature-based 
approaches respectively. A figurative illustration is presented in Figure 1. By using both layers, we would leverage 
the benefits that both malware strategies implement. Layer three acts as a bonus layer to catch any pitfalls from 
the previous two layers. In this layer, we introduce machine learning techniques to enable us to train the 
malware classifiers. Figure 2, Diagrammatically depict the procedure of all the layers. We can completely 
optimize all three approaches for their resistance in identifying malware samples and run-time efficiency by 
adding the machine learning algorithm layer.  
 

 
Figure 1: Diagram of the Architectural layer of the hybrid layer system 
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Figure 2: Diagram of the processes of the proposed hybrid technique 

4. Research Plan 
The primary purpose of this research is to present multiple potential approaches for training malware classifiers 
using machine learning. Another objective is to prevent ransomware from spreading laterally inside a network. 
here are two types of malware analysis techniques: signature-based malware analysis and dynamic malware 
analysis. Each of these strategies has advantages and limitations; the main problem of signature-based detection 
is that new and undiscovered malware cannot be identified, whereas Dynamic analysis takes time and is rigid. 
We may utilize the strengths of both analytical approaches while reducing their limitations by combining them 
to build a hybrid system. To prevent the lateral movement of ransomware, we will use various techniques such 
as SDN, Moving Target Defense, and Zero Trust. 
 
The objectives are: 

• To be able to obtain malware sample data set to perform experiments. 
• To be able to properly detect malware, either those that are known or even the new ones. 
• To be able to use machine learning algorithms to differentiate between benign and malicious programs. 
• To be able to prevent the lateral movement of ransomware. 

4.1 Data collection 
In previous methods, data were obtained from various websites such as VirusTotal, Virus shares, Zelster, 
MWanalysis.org, Vxheaven, PCHome Malware Repositories, etc. For research purposes, three major types of 
datasets are available/ being used and they are: 

• Publicly available datasets: These are currently being offered and provided publicly. They are also being 
updated and maintained by research enthusiasts for the purpose of research all over the world for free 
in the area of cyber security. 

• Artificially generated datasets: These are classified as datasets generated manually using special tools 
or collected from the network traffic by cyber security researchers. 

• Commercial datasets: As the name implies, these are datasets that are not freely offered to the public 
for use. They are provided as commercial projects and supported by companies for commercial 
purposes. 
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For the sake of this research, we shall be obtaining our dataset from publicly available datasets. This is because 
public datasets are freely available, generate new insights into data collected by fellow researchers, and possess 
a larger sample size. In order to obtain the biggest sample data, we will obtain malicious ransomware samples 
from public sites such as virusTotal, Vx heavens, NetLux, Anubis, nexginre for malicious data and Benign samples 
from portableapps.com. By collecting ransomware sample datasets from a wide variety of publicly available 
datasets, we can achieve one of our goals of building not only the biggest sample but also the more diverse 
dataset. 

4.2 Data Processing 
A testbed similar to what is presented by Kardile et al (2017) will be used. In this testbed, two environments are 
used. The first is a realistic user environment and the second is an artificial environment. We can then proceed 
to run the malicious sample in these two different environments. These two environments are built on the 
Cuckoo sandbox because it is impossible to lose users’ data because it reverts to normal after the malicious 
sample has been completely run. After this, the file system call trace and the I/O access are being recorded using 
the process monitor. Finally, the proposed system would then detect and analyze the ransomware through 
manipulating the process monitor. It is also important to note that a virtual machine is often being set up for 
many dynamic analyses such as this. The need for a virtual machine is to emulate the regular Host OS. Since 
malicious samples can harm the host OS, a virtual machine OS is being used in its place because even though it 
looks identical, it is completed isolated from the host OS. Two of the most commonly used virtual machines are 
VM Workstation and Oracle Virtual Box. Other tools involved in the monitoring of ransomware behaviors 
include; 

• ProcessMonitor: This is a tool that is available on Windows, and it is used for monitoring file systems, 
processes, threads, networks, and Registry. 

• Ollydgb: this is an x86 debugger that is useful for examining the execution of another program. 
• WireShark: This is an open-source sniffing and analysis tool that captures network traffic. 
• Netcat: Networking tool that can monitor data transfer over a network. 

 
We are combining both the static and dynamic methods of analysis for our hybrid method to provide a more 
hybrid solution. This hybrid solution is then tested again using four different machine learning algorithms to find 
the best and most accurate malware detection. The tools we can use for the static analysis in order to be able 
to extract the static features such as the string, the imports, the exports, and much more, include IDA pro 
disassembler, capstone, Peid, PsStudios. For the dynamic extraction, we can use tools such as ProcMon, Ollydbg, 
Wireshark, RegShot, and Cuckoo Sandbox to gather runtime features. As stated above for the dynamic analysis, 
we would use the OS of a virtual machine so as not to endanger our host OS. Our testbed is being set up this 
way because while the static analysis has the upper hand by consuming fewer resources and having a higher 
analysis speed, it cannot detect unknown and obfuscated malware. With the dynamic analysis alone, we can 
detect unknown malware, but we would consume more resources and find it difficult to detect malware that 
hides their behaviors during run time. We can catch any fallout from the previous two methods with the 
additional layer of machine learning algorithms. 

4.3 Data Analysis 
Classification algorithms are classified into symbolic learning algorithms (CART. C4.5, NewID, AC2, ITrule, Cal5, 
CN2), statistical algorithms (Naive Bayes, k-nearest neighbor, kernel density, linear discriminant, quadratic 
discriminant, logistic regression, projection pursuit, Bayesian networks), neural networks (backpropagation, 
radial basis functions), and Random Forest. However, for the purpose of this research, we will be comparing 
Logistic Regression, Naive Bayes Classifier, Random Forest, and a Decision Tree.   
 
The aim is to record the performance of Logistic Regression, Naive Bayes, Radom Forest, and Decision Tree 
Classifier on a data set to classify. The result will be tabulated and graphed to show the recommended algorithm 
for classifying data sets. 
 
The project will consist of the following stages:  

• The data will be collected (and cleaned if necessary) from the various open-source ransomware 
database.  

• The data will be separated into training and test data. 
• Use the data set to build a decision tree, perform the necessary tests, and record findings. 
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• Use the data set to train a model using logistic regression, perform the necessary tests, and record 
findings.  

• Use the data set to train the model using Naive Bayes Classifier, perform the necessary tests, and record 
findings.   

• Compare the performance of the algorithms and provide proof (if any) of the recommended algorithm 
for the input data.  

 
The goal is to train the four selected classification algorithms to predict whether a malware sample is malicious 
or benign. The data set used for the training and testing will be the same. The performance of all algorithms will 
be measured, calculated, and compared based on accuracy, speed, and error recorded. The reason for choosing 
a random forest classifier is that compared to other machine learning classifiers, they are faster and a lot more 
scalable to deploy. From previous research carried out by Mehnaz et al (2018) for RWGward, it was also noticed 
that another tree-based classifier known as decision tree had a high performance like the Random Forest for 
Non-Linear datasets. For these reasons, we can consider using both tree classifiers for non-linear datasets or use 
the naive Bayes and Logistic regression for others. 

4.4 Evaluation 
Recent work by Scaife et al (2016) shows that instead of testing the program that was making the changes to 
the file, their method tested the user’s data that was being changed. This means that they are able to create an 
early alert for ransomware based on how the users' data was changing. 
 
We can test our research by obtaining and modifying some ransomware to develop new ransomware. So, these 
new ransomware tools will have new signatures and different behavior. These ransomware samples would also 
be collected from various ransomware families to have a wide range of classifications. 
 
The four algorithms will be evaluated against the data provided through the various publicly available datasets. 
The data has been collected and correctly labelled, thus serving as good training and test data. The evaluation 
of the algorithms would be based on their speed (performance), accuracy (in %), and their marginal error (in %).  
 
In order to be precise with the performance of all algorithms, they will be compared with different input sizes 
and measured accordingly. We would also employ the use of Machine learning tools. There are several machine 
learning tools available, and they are divided into two: python-based tools and Java-based tools. For the python-
based tools, we have tools such as Scikit learn, Keras, and Theano. For the Java-Based tool, we have Weka. 

4.5 Lateral Movement Prevention 
We will set up another testbed with multiple VMs to capture how ransomware moves through the network. We 
will implement various techniques to prevent the lateral movement of ransomware and compare the results. 
These methods include SDN, network segmentation, zero trust architecture, and IP hopping by Moving Target 
Defense methods. We will compare their success in preventing lateral movement of all ransomware in our 
dataset. The cost of implementation, the effect on the network performance will also be measured and 
compared. 

4.6 Expected Outcome 
We can present a rather comprehensive and detailed solution by combining the various methods and features 
present in the hybrid-based detection system. Also, we can overcome the deception and confusion that comes 
with just one type of detection technique to a large extent. This way, it would allow us to understand the 
program better more systematically, comprehensively, and accurately. Based on the results of our second 
testbed, we can also classify solutions for preventing the lateral movement of ransomware based on their 
accuracy and network performance. 
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