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Abstract: The PHANTOMATRIX project is a research incubator running at the International University of Applied Sciences and
aims to advance the field of Human-Machine Interaction by integrating machine learning (ML) techniques to predict
emotional states using physiological and facial expression data within Virtual Reality environments. A major focus of the
PHANTOMATRIX project is on employing trustworthy ML models by using explainable Al (XAl) methods that allow to rank
features according to their predictive power, which aids in understanding the most influential factors in emotional state
predictions. In addition, a comparative analysis of XAl techniques to emotion prediction models allows us to assess and
correct for the effect of gender on the predictive performance. As affective computing is a highly sensitive research arena, it
is of outmost importance to ensure bias free models. Key XAl methods such as Deep Taylor Decomposition (DTD), and
SHapley Additive exPlanations (SHAP) are employed to clarify the contributions of features towards model predictions,
providing insights into how specific signals influence emotion detection across individuals. This allows for a comprehensive
comparison of different XAl approaches and their utility in gender bias detection and mitigation. To further our
understanding of gender dynamics within emotional predictions, we develop intuitive visualizations that graphically
represent the link between multimodal input data and the resulting emotional predictions to support the interpretation of
complex model outputs and to make them more accessible not only to researchers but also to novice users of the system.
Our background research demonstrates the effectiveness of XAl methods in identifying and mitigating gender bias in emotion
prediction models. By applying XAl, the project reduces the influence of gender-based disparities in affective computing,
leading to more equitable model performance across demographics. This research not only highlights the importance of
transparent, bias-free Al-affect models but also sets a foundation for future developments in responsible affective
computing. The findings contribute to advancing trust in Al-driven emotion analysis, promoting fairer and more inclusive
applications of this highly relevant technology.
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1. Introduction

Affective computing, a term created by Rosalind Picard (1995), is a multidisciplinary subfield of artificial
intelligence (Al), develops systems that recognize, interpret, and simulate human emotions. This research area
is essential for enhancing human-computer interactions and developing applications that respond
empathetically to users. Understanding human emotions is not only vital for creating more user-friendly
technologies but also plays a crucial role in various domains such as mental health, education, and customer
service (Pei et al, 2024).

Wearable technology has revolutionized the way we collect and analyze emotional data (Schmidt et al, 2019).
Devices such as smartwatches and specialized sensors can continuously and non-invasively monitor
physiological signals that correlate with emotional states and hence provide insights into the emotional
experiences of individuals in real-time. The integration of multi-modal wearable data offers researchers valuable
tools for capturing the complexity of human emotions. However, incorporating multiple data sources requires a
more sophisticated interpretation to ensure that end-users understand how insights are derived from their data.
Especially when "black-box" machine learning (ML) techniques are applied, it becomes crucial to explain the
outcomes to enhance transparency, provide meaningful insights, and control. Explainable Al (XAl) can play a key
role in making ML models more interpretable and reveal potential bias (Pahde et al, 2023).

Despite the advancements in affective computing, the presence of inherent biases and ethical concerns poses
significant challenges concerning privacy, consent, discrimination, and the potential for data misuse (Iren et al,
2023). Affective computing can gather sensitive biometric and behavioral data that is susceptible to bias, arising
from datasets that do not represent diverse cultures or demographic groups, leading to discriminatory outcomes
and social stereotypes, including gender bias (Manresa-Yee et al, 2023; Suman et al. 2022). As algorithms can be
vulnerable to stereotyping and discrimination, particularly when their performance varies across gender groups
as shown for affect classification, also Microsoft committed to the retirement of classifiers for attributes like
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gender and emotion in its Face API. This highlights the critical need for fairness and transparency in emotion
recognition to prevent a perpetuation of harmful stereotypes and unjust outcomes, to ensure these systems are
both fair and inclusive. By enhancing the transparency and reliability of emotion recognition technologies, we
can better address these biases and reduce the risk of discrimination, ensuring a more equitable deployment of
Al in emotion detection applications (Murindanyi et al, 2023).

In sum, PHANTOMATRIX focusses on Al-based multi-modal emotion classification and aims to explore whether
XAl methods can be utilized to identify and mitigate potential gender biases present for classifying emotions.

2. Methods

2.1 Multimodal ML-analysis in PHANTOMATRIX

The resulting data from 100 participants of the PHANTOMATRIX study will be used, which is derived from the
FDA-cleared Empatica EmbracePlus, a state-of-the-art wearable device, that collects multi-modal physiological
data, e.g. electrodermal activity (EDA) and skin temperature. In addition, self-report data from participants that
reflect their emotional experience, and a structured questionnaire (PANAS) will be used to ensure the mapping
of emotional states to physiological signals. Also, facial expressions will be recorded and analyzed.

Features indicative of specific emotions (e.g. anxiety) are extracted from the raw physiological data using
dimensionality reduction techniques, such as Principal Component Analysis (PCA) or t-Distributed Stochastic
Neighbor Embedding (t-SNE). Relevant time intervals are then determined and mapped to each modality. The
ML model design from Vu et al (2023) will be adapted, which uses an early fusion of multi-modal emotional
features based on Gaussian Transformation of physiological signals followed by a Transformer Encoder
processing. The design will be extended for PHANTOMATRIX with facial expressions (see Figure 1). Model
performance is evaluated using a subset of the data reserved for testing (five-fold cross validation) and based
on the self-report outcomes that serve as ground truth.
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Figure 1: ML model design showing the integration of the different features

2.2 Bias Detection and Mitigation

Post-hoc XAl techniques such as Deep Taylor Decomposition (DTD) and SHapley Additive exPlanations (SHAP)
will be applied to analyze and visualize the importance of sensitive features across modalities. After assessing
their impact on the prediction outcome, the effects will be mitigated from the overall predictive model to obtain
a bias-free general affect model.

2.2.1 Deep Taylor Decomposition

DTD explains neural network predictions by breaking down the output into contributions from each input
feature by propagating relevance scores backward through the network (Lauritsen et al, 2020). Using a first-
order Taylor series expansion around a chosen reference point for each neuron, DTD estimates how changes in
input features affect the overall prediction. Using DTD, the relevance of each input feature (e.g., physiological
signals) to the model's emotional state predictions can be traced back through the Transformer layers. By
calculating the relevance scores separately for male and female data samples, DTD can identify if certain
physiological features disproportionately influence the predictions based on gender.
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2.2.2 Gender Bias Detection Based on SHAP

SHAP have been repeatedly used to quantify bias, like gender effects, in ML models (Kristjanpoller et al, 2023).
To enable time-series analysis with SHAP, VARSHAP, a method that uses vector autoregressive models to capture
temporal dependencies, is used (Villani et al, 2022). Additionally, an event detection method aggregates feature
importance over time, enabling identification of influential time steps.

SHAP interaction values will be used to assess not only the individual feature contributions to emotion
predictions but also the interaction effects between different features, specifically focusing on how these
interactions may differ between genders. This method is adapted from Lundberg et al (2020) and allows for a
nuanced understanding of how combinations of physiological signals and facial expressions interact to affect
emotional state predictions, with respect to gender differences. Lundberg’s SHAP interaction plots are adapted
to show interactions between gender and time-dependent features to uncover whether certain feature
combinations disproportionately affect predictions for specific groups. By using VARSHAP to compute feature
importances and interactions for different demographic subgroups, it’s possible to create interaction plots for
each subgroup, indicating potential biases. Combining time series SHAP with interaction plots will visualize how
interactions vary over time for different groups, based on heatmaps and line plots. In addition, event detection
to interaction values (rather than just individual SHAP values) will allow to identify moments when demographic-
feature interactions spike unusually. This indicates that a model’s response to certain interactions is heightened
for specific groups at certain times.

2.2.3 Bias Mitigation Strategies
To mitigate bias detected in the ML models, two approaches will be applied:

e An adversarial network is applied that learns to predict gender based on DTD/SHAP outputs. The
main model is trained to minimize this predictability, reducing demographic-based dependencies.
Then attention weights are adjusted or regularized to ensure that the focus on key features is
consistent across gender. This minimizes differential impacts on predictions based on gender
characteristics.

e The calculated feature importances from gender are used for each prediction and SHAP values
corresponding to these sensitive features are summed to understand how much they contribute
to the overall prediction. Then the summed SHAP contributions of the sensitive features are
subtracted from the model's raw prediction with the SHAP Explainer?. This adjustment effectively
"removes" the influence of demographic information, leaving only the contributions from non-
sensitive features.

Insights derived from the XAl methods, and the mitigation strategies will be used to refine the emotion detection
models iteratively and the model will be adapted and retrained to minimize these biases. See Figure 2 for an
overview of the process pipeline.
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Figure 2: Overview of process for detecting bias in ML emotion classification with XAl
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